

Welcome to Mrinversion documentation!

	Deployment

	[image: PyPI version]
 [https://pypi.python.org/pypi/mrinversion][image: PyPI - Python Version]

	Build Status

	[image: GitHub Workflow Status]
 [https://github.com/DeepanshS/mrinversion/actions][image: Documentation Status]
 [https://mrinversion.readthedocs.io/en/latest/?badge=latest]

	License

	[image: License]
 [https://opensource.org/licenses/BSD-3-Clause]

	Metrics

	[image: Language grade: Python]
 [https://lgtm.com/projects/g/DeepanshS/mrinversion/context:python][image: _images/badge.svg]
 [https://codecov.io/gh/DeepanshS/mrinversion][image: Total alerts]
 [https://lgtm.com/projects/g/DeepanshS/mrinversion/alerts/]

	GitHub

	[image: GitHub issues]
 [https://github.com/DeepanshS/mrinversion/issues]

About

The mrinversion python package is based on the statistical learning technique for
determining the distribution of the magnetic resonance (NMR) tensor parameters
from two-dimensional NMR spectra correlating the isotropic to anisotropic frequencies.
The library utilizes the mrsimulator [https://mrsimulator.readthedocs.io/en/stable/]
package for generating solid-state NMR spectra and
scikit-learn [https://scikit-learn.org/stable/] package for statistical learning.

Features

The mrinversion package includes the inversion of a two-dimensional
solid-state NMR spectrum of dilute spin-systems to a three-dimensional distribution of
tensor parameters. At present, we support the inversion of

	Magic angle turning (MAT), Phase adjusted spinning sidebands (PASS), and similar
spectra correlating the isotropic chemical shift resonances to pure anisotropic
spinning sideband resonances into a three-dimensional distribution of
nuclear shielding tensor parameters, \(\rho(\delta_\text{iso}, \zeta_\sigma, \eta_\sigma)\),
where \(\delta_\text{iso}\) is the isotropic chemical shift, and \(\zeta_\sigma\)
and \(\eta_\sigma\), are the shielding anisotropy and asymmetry parameters,
respectively, defined using the Haeberlen convention.

	Magic angle flipping (MAF) spectra correlating the isotropic chemical shift
resonances to pure anisotropic resonances into a three-dimensional distribution of
nuclear shielding tensor parameters, \(\rho(\delta_\text{iso}, \zeta_\sigma, \eta_\sigma)\),
where \(\delta_\text{iso}\) is the isotropic chemical shift, and \(\zeta_\sigma\)
and \(\eta_\sigma\), are the shielding anisotropy and asymmetry parameters,
respectively, defined using the Haeberlen convention.

View our example gallery

[image: _images/View-Example%20Gallery-Purple.svg]

Getting Started

Getting Started

	Installation
	Requirements

	Installing mrinversion

	Package dependencies

	Introduction
	Objective

	Generic Linear problem

	Understanding the x-y plot

	Before getting started
	Prepping the 2D dataset for inversion

	Getting started with mrinversion
	Import the dataset

	Dimension Setup

	Generating the kernel

	Data compression (optional)

	Setting up the inverse problem

	Statistical learning of tensor parameters

	API-Reference
	Pure anisotropic Nuclear Shielding Kernel

	Smooth Lasso

	Smooth Lasso cross-validation

	TSVDCompression

	Utils

Examples

Examples

	Example Gallery

Project details

Project details

	Changelog

	License

	Acknowledgment

How to cite

If you use this work in your publication, please cite the following.

	Srivastava, D. J.; Grandinetti P. J., Statistical learning of NMR tensors from 2D
isotropic/anisotropic correlation nuclear magnetic resonance spectra, J. Chem. Phys.
153, 134201 (2020). https://doi.org/10.1063/5.0023345.

	Deepansh J. Srivastava, Maxwell Venetos, Philip J. Grandinetti, Shyam Dwaraknath, & Alexis McCarthy. (2021, May 26). mrsimulator: v0.6.0 (Version v0.6.0). Zenodo. http://doi.org/10.5281/zenodo.4814638

Additionally, if you use the CSDM data model, please consider citing

	Srivastava DJ, Vosegaard T, Massiot D, Grandinetti PJ (2020) Core Scientific Dataset Model: A lightweight and portable model and file format for multi-dimensional scientific data. PLOS ONE 15(1): e0225953. https://doi.org/10.1371/journal.pone.0225953

Indices and tables

	Index

	Module Index

	Search Page

 Installation

Installation

Requirements

mrinversion has the following strict requirements:

	Python [https://www.python.org] 3.6 or later

	Numpy [https://numpy.org] 1.17 or later

See Package dependencies for a full list of requirements.

Make sure you have the required version of python by typing the following in the
terminal,

Tip

You may also click the copy-button located at the top-right corner of the code cell
area in the HTML docs, to copy the code lines without the prompts and then paste it
as usual.
Thanks to Sphinx-copybutton [https://sphinx-copybutton.readthedocs.io/en/latest/])

$ python --version

For Mac users, python version 3 may be installed under the name python3. You may replace
python for python3 in the above command and all subsequent python statements.

Installing mrinversion

On Google Colab Notebook

Colaboratory is a Google research project. It is a Jupyter notebook environment that
runs entirely in the cloud. Launch a new notebook on
Colab [http://colab.research.google.com]. To install the mrinversion package, type

!pip install mrinversion

in the first cell, and execute. All done! You may now proceed to the next section and
start using the library.

On Local machine (Using pip)

The mrinversion package utilizes the mrsimulator [https://mrsimulator.readthedocs.io/en/latest/]
package for generating the NMR line-shapes.

For Linux and Mac users, type the following in the terminal to install the
package.

$ pip install mrinversion

For Windows users, first, install [https://mrsimulator.readthedocs.io/en/latest/installation.html#on-local-machine-using-pip]
the mrsimulator package and then install the mrinversion package using the above command.

If you get a PermissionError, it usually means that you do not have the required
administrative access to install new packages to your Python installation. In this
case, you may consider adding the --user option, at the end of the statement, to
install the package into your home directory. You can read more about how to do this in
the pip documentation [https://pip.pypa.io/en/stable/user_guide/#user-installs].

$ pip install mrinversion --user

Upgrading to a newer version

To upgrade, type the following in the terminal/Prompt,

$ pip install mrinversion -U

 Page Source

 Package dependencies

Package dependencies

The mrinversion library depends on the following packages:

Required packages

	numpy>=1.17 [https://www.numpy.org]

	csdmpy>=0.4 [https://csdmpy.readthedocs.io/en/stable/]

	mrsimulator>=0.6 [https://mrsimulator.readthedocs.io/en/stable/] (for generating
the NMR line-shape)

	scikit-learn>=0.22.1 [https://scikit-learn.org/stable/] (for statistical leaning methods)

Other packages

	pytest>=4.5.0 for unit tests.

	pre-commit for code formatting

	sphinx>=2.0 for generating the documentation

	sphinxjp.themes.basicstrap for documentation.

	sphinx-copybutton

 Page Source

 Introduction

Introduction

Objective

In mrinversion, we solve for the distribution of the second-rank traceless
symmetric tensor principal components, through an inversion of a pure anisotropic
NMR spectrum.

In the case of the shielding tensors, the pure anisotropic frequency spectra corresponds
the cross-sections of the 2D isotropic v.s. anisotropic correlation spectrum, such as
the 2D One Pulse (TOP) MAS, phase adjusted spinning sidebands (PASS), magic-angle turning
(MAT), extended chemical shift modulation (XCS), magic-angle hopping (MAH), magic-angle
flipping (MAF), and Variable Angle Correlation Spectroscopy (VACSY). A key feature of all
these 2D isotropic/anisotropic correlation spectra—–either as acquired or after a shear
transformation—–is that the anisotropic cross-section can be modeled as a linear
combination of subspectra,

(1)\[s(\nu| \delta_\text{iso}) = \int_{\bf R} \mathcal{K}(\nu, {\bf R}) f({\bf R} | \delta_\text{iso}) d{\bf R},\]

where \(s(\nu| \delta_\text{iso})\) is the observed anisotropic cross-section at a
given isotropic shift, \(\delta_\text{iso}\), \(\mathcal{K}(\nu, {\bf R})\) represents
a simulated subspectrum of a nuclear spin system with a given set of parameters, \({\bf R}\),
and \(f({\bf R} | \delta_\text{iso})\) is the probability of the respective set of
parameters. In Eq. (1), \({\bf R}\) represents the anisotropic and asymmetry
parameters of the shielding tensor.

Note, Eq. (1) is a Fredholm integral of the first kind.

Generic Linear problem

Linear inverse problems on Fredholm integral of the first kind are frequently
encountered in the scientific community and have the following generic form

(2)\[{\bf s} = {\bf K \cdot f},\]

where \({\bf K} \in \mathbb{R}^{m\times n}\) is the transforming kernel (matrix),
\({\bf f} \in \mathbb{R}^n\) is the unknown and desired solution, and
\({\bf s} \in \mathbb{R}^m\) is the known signal, which includes the
measurement noise. When the matrix \({\bf K}\) is non-singular and \(m=n\),
the solution to the problem in Eq. (2) has a simple closed-form solution,

(3)\[{\bf f} = {\bf K}^{-1} \cdot {\bf s}.\]

The deciding factor whether the solution \({\bf f}\) exists in Eq. (3)
is whether or not the kernel \({\bf K}\) is invertible.
Often, most scientific problems with practical applications suffer from singular,
near-singular, or ill-conditioned kernels, where \({\bf K}^{-1}\) doesn’t exist.
Such types of problems are termed as ill-posed. The inversion of a purely anisotropic
NMR spectrum to the distribution of the tensorial parameters is one such ill-posed
problem.

Regularized linear problem

A common approach in solving ill-posed problems is to employ the regularization
methods of form

(4)\[{\bf f^\dagger} = \underset{{\bf f} > 0}{\text{argmin}} \left(
 \|{\bf K \cdot f} - {\bf s}\|^2_2 + g({\bf f})
\right),\]

where \(\|{\bf z}\|_2\) is the l-2 norm of \({\bf z}\), \(g({\bf f})\)
is the regularization term, and \({\bf f}^\dagger\) is the regularized solution.
The choice of the regularization term, \(g({\bf f})\), is often based on prior
knowledge of the system for which the linear problem is defined. For anisotropic NMR
spectrum inversion, we choose the smooth-LASSO regularization.

Smooth-LASSO regularization

Our prior assumption for the distribution of the tensorial parameters is that it should
be smooth and continuous for disordered and sparse and discrete for crystalline
materials. Therefore, we employ the smooth-lasso method, which is a linear model
that is trained with the combined l1 and l2 priors as the regularizer. The method
minimizes the objective function,

(5)\[\| {\bf K \cdot f - s} \|^2_2 + \alpha \sum_{i=1}^{d} \| {\bf J}_i \cdot {\bf f} \|_2^2
 + \lambda \| {\bf f} \|_1 ,\]

where \(\alpha\) and \(\lambda\) are the hyperparameters controlling the
smoothness and sparsity of the solution \({\bf f}\). The matrix \({\bf J}_i\)
typically reflects some underlying geometry or the structure in the true solution. Here,
\({\bf J}_i\) is defined to promote smoothness along the \(\text{i}^\text{th}\)
dimension of the solution \({\bf f}\) and is given as

(6)\[{\bf J}_i = {\bf I}_{n_1} \otimes \cdots \otimes {\bf A}_{n_i}
 \otimes \cdots \otimes {\bf I}_{n_{d}},\]

where \({\bf I}_{n_i} \in \mathbb{R}^{n_i \times n_i}\) is the identity matrix, and
\({\bf A}_{n_i}\) is the first difference matrix given as

(7)\[\begin{split}{\bf A}_{n_i} = \left(\begin{array}{ccccc}
 1 & -1 & 0 & \cdots & \vdots \\
 0 & 1 & -1 & \cdots & \vdots \\
 \vdots & \vdots & \vdots & \vdots & 0 \\
 0 & \cdots & 0 & 1 & -1
 \end{array}\right) \in \mathbb{R}^{(n_i-1)\times n_i}.\end{split}\]

The symbol \(\otimes\) is the Kronecker product. The terms,
\(\left(n_1, n_2, \cdots, n_d\right)\), are the number of points along the
respective dimensions, with the constraint that \(\prod_{i=1}^{d}n_i = n\),
where \(d\) is the total number of dimensions in the solution \({\bf f}\),
and \(n\) is the total number of features in the kernel, \({\bf K}\).

Understanding the x-y plot

A second-rank symmetric tensor, \({\bf S}\), in a three-dimensional space, is
described by three principal components, \(s_{xx}\), \(s_{yy}\), and
\(s_{zz}\), in the principal axis system (PAS). Often, depending on the context of
the problem, the three principal components are expressed with three new parameters
following a convention. One such convention is the Haeberlen convention, which defines
\(\delta_\text{iso}\), \(\zeta\), and \(\eta\), as the isotropic shift,
anisotropy, and asymmetry parameters, respectively. Here, the parameters \(\zeta\)
and \(\eta\) contribute to the purely anisotropic frequencies, and determining the
distribution of these two parameters is the focus of this library.

Defining the inverse grid

When solving any linear inverse problem, one needs to define an inverse grid before
solving the problem. A familiar example is the inverse Fourier transform, where
the inverse grid is defined following the Nyquist–Shannon sampling theorem. Unlike
inverse Fourier transform, however, there is no well-defined sampling grid for the
second-rank traceless symmetric tensor parameters. One obvious choice is
to define a two-dimensional \(\zeta\)-\(\eta\) Cartesian grid.

As far as the inversion problem is concerned, \(\zeta\) and \(\eta\)
are just labels for the subspectra. In simplistic terms, the inversion problem solves
for the probability of each subspectrum, from a given pre-defined basis of subspectra,
that describes the observed spectrum. If the subspectra basis is defined over a
\(\zeta\)-\(\eta\) Cartesian grid, multiple
\((\zeta, \eta)\) coordinates points to the same subspectra. For
example, the subspectra from coordinates \((\zeta, \eta=1)\) and
\((-\zeta, \eta=1)\) are identical, therefore, distinguishing these
coordinates from the subspectra becomes impossible.

The issue of multiple coordinates pointing to the same object is not new. It is
a common problem when representing polar coordinates in the Cartesian basis. Try describing
the coordinates of the south pole using latitudes and longitudes. You can define the latitude,
but describing longitude becomes problematic. A similar situation arises in the context of
second-rank traceless tensor parameters when the anisotropy goes to zero. You can specify
the anisotropy as zero, but defining asymmetry becomes problematic.

Introducing the \(x\)-\(y\) grid

A simple fix to this issue is to define the \((\zeta, \eta)\) coordinates
in a polar basis. We, therefore, introduce a piece-wise polar grid representation of the
second-rank traceless tensor parameters, \(\zeta\)-\(\eta\), defined as

(8)\[\begin{split}r_\zeta = | \zeta_ | ~~~~\text{and}~~~~
\theta = \left\{ \begin{array}{l r}
 \frac{\pi}{4} \eta &: \zeta \le 0, \\
 \frac{\pi}{2} \left(1 - \frac{\eta}{2} \right) &: \zeta > 0.
 \end{array}
 \right.\end{split}\]

Because Cartesian grids are more manageable in computation, we re-express the above polar
piece-wise grid as the x-y Cartesian grid following,

(9)\[x = r_\zeta \cos\theta ~~~~\text{and}~~~~ y = r_\zeta \sin\theta.\]

In the x-y grid system, the basis subspectra are relatively distinguishable. The
mrinversion library provides a utility function to render the piece-wise polar grid
for your matplotlib figures. Copy-paste the following code in your script.

>>> import matplotlib.pyplot as plt
>>> from mrinversion.utils import get_polar_grids
...
>>> plt.figure(figsize=(4, 3.5))
>>> ax=plt.gca()
>>> # add your plots/contours here.
>>> get_polar_grids(ax)
>>> ax.set_xlabel('x / ppm')
>>> ax.set_ylabel('y / ppm')
>>> plt.tight_layout()
>>> plt.show()

(png, hires.png, pdf)

[image: _images/introduction-1.png]

[image: _images/null.png]

Figure 1 The figure depicts the piece-wise polar \(\zeta\)-\(\eta\) grid represented on
an x-y grid. The radial and angular grid lines represent the magnitude of
\(\zeta\) and \(\eta\), respectively. The blue and red shading represents the
positive and negative values of \(\zeta\), respectively. The radian grid lines are
drawn at every 0.2 ppm increments of \(\zeta\), and the angular grid lines are
drawn at every 0.2 increments of \(\eta\). The x and y-axis are \(\eta=0\),
and the diagonal \(x=y\) is \(\eta=1\).

If you are familiar with the matplotlib library, you may notice that most code lines are
the basic matplotlib statements, except for the line that says get_polar_grids(ax).
The get_polar_grids() is a utility function that generates
the piece-wise polar grid for your figures.

Here, the shielding anisotropy parameter, \(\zeta\), is the radial dimension,
and the asymmetry parameter, \(\eta\), is the angular dimension, defined using Eqs.
(8) and (9). The region in blue and red corresponds to the
positive and negative values of \(\zeta\), where the magnitude of the anisotropy
increases radially. The x and the y-axis are \(\eta=0\) for the negative and positive
\(\zeta\), respectively. When moving towards the diagonal from x or y-axes, the
asymmetry parameter, \(\eta\), uniformly increase, where the diagonal is
\(\eta=1\).

 Page Source

 Before getting started

Before getting started

Prepping the 2D dataset for inversion

The following is a list of some requirements and recommendations to help prepare
the 2D dataset for inversion.

Common recommendations/requirements

	

 Getting started with mrinversion

Getting started with mrinversion

We have put together a set of guidelines for using the mrinversion package.
We encourage our users to follow these guidelines for consistency.

Let’s examine the inversion of a purely anisotropic MAS sideband spectrum into a
2D distribution of nuclear shielding anisotropy parameters. For illustrative purposes,
we use a synthetic one-dimensional purely anisotropic spectrum. Think of this as a
cross-section of your 2D MAT/PASS dataset.

Import relevant modules

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from matplotlib import rcParams
>>> from mrinversion.utils import get_polar_grids
...
>>> rcParams['pdf.fonttype'] = 42 # for exporting figures as illustrator editable pdf.
...
>>> # a function to plot the 2D tensor parameter distribution
>>> def plot2D(ax, csdm_object, title=''):
... # convert the dimension from `Hz` to `ppm`.
... _ = [item.to('ppm', 'nmr_frequency_ratio') for item in csdm_object.dimensions]
...
... levels = (np.arange(9)+1)/10
... ax.contourf(csdm_object, cmap='gist_ncar', levels=levels)
... ax.grid(None)
... ax.set_title(title)
... ax.set_aspect("equal")
...
... # The get_polar_grids method place a polar zeta-eta grid on the background.
... get_polar_grids(ax)

Import the dataset

The first step is getting the sideband spectrum. In this example, we get the data
from a CSDM 1 compliant file-format. Import the
csdmpy [https://csdmpy.readthedocs.io/en/latest/] module and load the dataset as
follows,

Note

The CSDM file-format is a new open-source universal file format for multi-dimensional
datasets. It is supported by NMR programs such as SIMPSON 2, DMFIT 3, and
RMN 4. A python package supporting CSDM file-format,
csdmpy [https://csdmpy.readthedocs.io/en/latest/], is also available.

>>> import csdmpy as cp
...
>>> filename = "https://osu.box.com/shared/static/xnlhecn8ifzcwx09f83gsh27rhc5i5l6.csdf"
>>> data_object = cp.load(filename) # load the CSDM file with the csdmpy module

Here, the variable data_object is a CSDM [https://csdmpy.readthedocs.io/en/latest/api/CSDM.html]
object. The NMR spectroscopic dimension is a frequency dimension. NMR
spectroscopists, however, prefer to view the spectrum on a dimensionless scale. If the
dataset dimension within the CSDM object is in frequency, you may convert it into ppm
as follows,

>>> # convert the dimension coordinates from `Hz` to `ppm`.
>>> data_object.dimensions[0].to('ppm', 'nmr_frequency_ratio')

In the above code, we convert the dimension at index 0 from Hz to ppm. For multi-dimensional
datasets, use the appropriate indexing to convert individual dimensions to ppm.

For comparison, let’s also include the true probability distribution from which the
synthetic spinning sideband dataset is derived.

>>> datafile = "https://osu.box.com/shared/static/lufeus68orw1izrg8juthcqvp7w0cpzk.csdf"
>>> true_data_object = cp.load(datafile) # the true solution for comparison

The following is the plot of the spinning sideband spectrum as well as the corresponding
true probability distribution.

>>> _, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={'projection': 'csdm'})
>>> ax[0].plot(data_object)
>>> ax[0].set_xlabel('frequency / ppm')
>>> ax[0].invert_xaxis()
>>> ax[0].set_title('Pure anisotropic MAS spectrum')
...
>>> plot2D(ax[1], true_data_object, title='True distribution')
>>> plt.tight_layout()
>>> plt.savefig('filename.pdf') # to save figure as editable pdf
>>> plt.show()

(png, hires.png, pdf)

[image: _images/getting_started-5.png]

[image: _images/null.png]

Figure 2 The figure on the left is the pure anisotropic MAS sideband amplitude spectrum corresponding
to the nuclear shielding tensor distribution shown on the right.

Dimension Setup

For the inversion, we need to define (1) the coordinates associated with the pure
anisotropic dimension, and (2) the two-dimensional x-y coordinates associated with the
anisotropic tensor parameters, i.e., the inversion solution grid.

In mrinversion, the anisotropic spectrum dimension is initialized with a
Dimension [https://csdmpy.readthedocs.io/en/latest/api/Dimensions.html] object from
the csdmpy [https://csdmpy.readthedocs.io/en/latest/] package. This object holds the
frequency coordinates of the pure anisotropic spectrum. Because the example NMR dataset
is imported as a CSDM object, the anisotropic spectrum dimension is already available as
a CSDM Dimension object in the CSDM object and can be copied from there.
Alternatively, we can create and initialize a anisotropic spectrum dimension using the
csdmpy library as shown below:

>>> anisotropic_dimension = cp.LinearDimension(count=32, increment='625Hz', coordinates_offset='-10kHz')
>>> print(anisotropic_dimension)
LinearDimension([-10000. -9375. -8750. -8125. -7500. -6875. -6250. -5625. -5000.
 -4375. -3750. -3125. -2500. -1875. -1250. -625. 0. 625.
 1250. 1875. 2500. 3125. 3750. 4375. 5000. 5625. 6250.
 6875. 7500. 8125. 8750. 9375.] Hz)

Here, the anisotropic dimension is sampled at 625 Hz for 32 points with an offset of
-10 kHz.

Similarly, we can create the CSDM dimensions needed for the x-y inversion grid as
shown below:

>>> inverse_dimension = [
... cp.LinearDimension(count=25, increment='370 Hz', label='x'), # the x-coordinates
... cp.LinearDimension(count=25, increment='370 Hz', label='y') # the y-coordinates
...]

Both dimensions are sampled at every 370 Hz for 25 points. The inverse dimension at
index 0 and 1 are the x and y dimensions, respectively.

Generating the kernel

Import the ShieldingPALineshape class and
generate the kernel as follows,

>>> from mrinversion.kernel.nmr import ShieldingPALineshape
>>> lineshapes = ShieldingPALineshape(
... anisotropic_dimension=anisotropic_dimension,
... inverse_dimension=inverse_dimension,
... channel='29Si',
... magnetic_flux_density='9.4 T',
... rotor_angle='54.735°',
... rotor_frequency='625 Hz',
... number_of_sidebands=32
...)

In the above code, the variable lineshapes is an instance of the
ShieldingPALineshape class. The three required
arguments of this class are the anisotropic_dimension, inverse_dimension, and
channel. We have already defined the first two arguments in the previous subsection.
The value of the channel attribute is the observed nucleus.
The remaining optional arguments are the metadata that describes the environment
under which the spectrum is acquired. In this example, these arguments describe a
\(^{29}\text{Si}\) pure anisotropic spinning-sideband spectrum acquired at 9.4 T
magnetic flux density and spinning at the magic angle (\(54.735^\circ\)) at 625 Hz.
The value of the rotor_frequency argument is the effective anisotropic modulation
frequency. For measurements like PASS 5, the anisotropic modulation frequency is
the physical rotor frequency. For measurements like the extended chemical shift
modulation sequences (XCS) 6, or its variants, where the effective anisotropic
modulation frequency is lower than the physical rotor frequency, then it should be set
accordingly.

The argument number_of_sidebands is the maximum number of sidebands that will be
computed per line-shape within the kernel. For most two-dimensional isotropic vs. pure
anisotropic spinning-sideband correlation spectra, the sampling along the sideband
dimension is the rotor or the effective anisotropic modulation frequency. Therefore, the
number_of_sidebands argument is usually the number of points along the sideband
dimension. In this example, this value is 32.

Once the ShieldingPALineshape instance is created, use the
kernel() method of the
instance to generate the spinning sideband kernel, as follows,

>>> K = lineshapes.kernel(supersampling=1)
>>> print(K.shape)
(32, 625)

Here, K is the \(32\times 625\) kernel, where the 32 is the number of samples
(sideband amplitudes), and 625 is the number of features (subspectra) on the
\(25 \times 25\) x-y grid. The argument supersampling is the supersampling
factor. In a supersampling scheme, each grid cell is averaged over a \(n\times n\)
sub-grid, where \(n\) is the supersampling factor. A supersampling factor of 1 is
equivalent to no sub-grid averaging.

Data compression (optional)

Often when the kernel, K, is ill-conditioned, the solution becomes unstable in
the presence of the measurement noise. An ill-conditioned kernel is the one
whose singular values quickly decay to zero. In such cases, we employ the
truncated singular value decomposition method to approximately represent the
kernel K onto a smaller sub-space, called the range space, where the
sub-space kernel is relatively well-defined. We refer to this sub-space
kernel as the compressed kernel. Similarly, the measurement data on the
sub-space is referred to as the compressed signal. The compression also
reduces the time for further computation. To compress the kernel and the data,
import the TSVDCompression class and follow,

>>> from mrinversion.linear_model import TSVDCompression
>>> new_system = TSVDCompression(K=K, s=data_object)
compression factor = 1.032258064516129
>>> compressed_K = new_system.compressed_K
>>> compressed_s = new_system.compressed_s

Here, the variable new_system is an instance of the
TSVDCompression class. If no truncation index is
provided as the argument, when initializing the TSVDCompression class, an optimum
truncation index is chosen using the maximum entropy method 7, which is the default
behavior. The attributes compressed_K
and compressed_s holds the
compressed kernel and signal, respectively. The shape of the original signal v.s. the
compressed signal is

>>> print(data_object.shape, compressed_s.shape)
(32,) (31,)

Setting up the inverse problem

When setting up the inversion, we solved the smooth LASSO 8 problem. Read the
Smooth-LASSO regularization section for further details.

Import the SmoothLasso class and follow,

>>> from mrinversion.linear_model import SmoothLasso
>>> s_lasso = SmoothLasso(alpha=0.01, lambda1=1e-04, inverse_dimension=inverse_dimension)

Here, the variable s_lasso is an instance of the
SmoothLasso class. The required arguments
of this class are alpha and lambda1, corresponding to the hyperparameters
\(\alpha\) and \(\lambda\), respectively, in the Eq. (5). At the
moment, we don’t know the optimum value of the alpha and lambda1 parameters.
We start with a guess value.

To solve the smooth lasso problem, use the
fit() method of the s_lasso
instance as follows,

>>> s_lasso.fit(K=compressed_K, s=compressed_s)

The two arguments of the fit() method are
the kernel, K, and the signal, s. In the above example, we set the value of K as
compressed_K, and correspondingly the value of s as compressed_s. You may also
use the uncompressed values of the kernel and signal in this method, if desired.

The solution to the smooth lasso is accessed using the
f attribute of the respective object.

>>> f_sol = s_lasso.f

The plot of the solution is

>>> _, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={'projection': 'csdm'})
>>> plot2D(ax[0], f_sol/f_sol.max(), title='Guess distribution')
>>> plot2D(ax[1], true_data_object, title='True distribution')
>>> plt.tight_layout()
>>> plt.show()

(png, hires.png, pdf)

[image: _images/getting_started-15.png]

[image: _images/null.png]

Figure 3 The figure on the left is the guess solution of the nuclear shielding tensor distribution
derived from the inversion of the spinning sideband dataset. The figure on the right
is the true nuclear shielding tensor distribution.

You may also evaluate the residuals corresponding to the solution using the
residuals() method of the object as
follows,

>>> residuals = s_lasso.residuals(K=K, s=data_object)
>>> # the plot of the residuals
>>> plt.figure(figsize=(5, 3.5))
>>> ax = plt.subplot(projection='csdm')
>>> ax.plot(residuals, color='black')
>>> plt.tight_layout()
>>> plt.show()

(png, hires.png, pdf)

[image: _images/getting_started-16.png]

[image: _images/null.png]

Figure 4 The residuals between the 1D MAS sideband spectrum and the predicted spectrum from the
guess shielding tensor parameter distribution.

The argument of the residuals method is the kernel and the signal data. We provide the
original kernel, K, and signal, s, because we desire the residuals corresponding to the
original data and not the compressed data.

Statistical learning of tensor parameters

The solution from a linear model trained with the combined l1 and l2 priors, such as the
smooth LASSO estimator used here, depends on the choice of the hyperparameters.
The solution shown in the above figure is when \(\alpha=0.01\) and
\(\lambda=1\times 10^{-4}\). Although it’s a solution, it is unlikely that this is
the best solution. For this, we employ the statistical learning-based model, such as the
n-fold cross-validation.

The SmoothLassoCV class is designed to solve the
smooth-lasso problem for a range of \(\alpha\) and \(\lambda\) values and
determine the best solution using the n-fold cross-validation. Here, we search the
best model on a \(10 \times 10\) pre-defined \(\alpha\)-\(\lambda\) grid,
using a 10-fold cross-validation statistical learning method. The \(\lambda\) and
\(\alpha\) values are sampled uniformly on a logarithmic scale as,

>>> lambdas = 10 ** (-4 - 2 * (np.arange(10) / 9))
>>> alphas = 10 ** (-3 - 2 * (np.arange(10) / 9))

Smooth-LASSO CV Setup

Setup the smooth lasso cross-validation as follows

>>> from mrinversion.linear_model import SmoothLassoCV
>>> s_lasso_cv = SmoothLassoCV(
... alphas=alphas,
... lambdas=lambdas,
... inverse_dimension=inverse_dimension,
... sigma=0.005,
... folds=10
...)
>>> s_lasso_cv.fit(K=compressed_K, s=compressed_s)

The arguments of the SmoothLassoCV is a list
of the alpha and lambda values, along with the standard deviation of the
noise, sigma. The value of the argument folds is the number of folds used in the
cross-validation. As before, to solve the problem, use the
fit() method, whose arguments are
the kernel and signal.

The optimum hyperparameters

The optimized hyperparameters may be accessed using the
hyperparameters attribute of
the class instance,

>>> alpha = s_lasso_cv.hyperparameters['alpha']
>>> lambda_1 = s_lasso_cv.hyperparameters['lambda']

The cross-validation surface

The cross-validation error metric is the mean square error metric. You may access this
data using the cross_validation_curve
attribute.

>>> plt.figure(figsize=(5, 3.5))
>>> ax = plt.subplot(projection='csdm')
>>> ax.contour(np.log10(s_lasso_cv.cross_validation_curve), levels=25)
>>> ax.scatter(-np.log10(s_lasso_cv.hyperparameters['alpha']),
... -np.log10(s_lasso_cv.hyperparameters['lambda']),
... marker='x', color='k')
>>> plt.tight_layout()
>>> plt.show()

(png, hires.png, pdf)

[image: _images/getting_started-20.png]

[image: _images/null.png]

Figure 5 The ten-folds cross-validation prediction error surface as a function of
the hyperparameters \(\alpha\) and \(\beta\).

The optimum solution

The best model selection from the cross-validation method may be accessed using
the f attribute.

>>> f_sol_cv = s_lasso_cv.f # best model selected using the 10-fold cross-validation

The plot of the selected tensor parameter distribution is shown below.

>>> _, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={'projection': 'csdm'})
>>> plot2D(ax[0], f_sol_cv/f_sol_cv.max(), title='Optimum distribution')
>>> plot2D(ax[1], true_data_object, title='True distribution')
>>> plt.tight_layout()
>>> plt.show()

(png, hires.png, pdf)

[image: _images/getting_started-22.png]

[image: _images/null.png]

Figure 6 The figure on the left is the optimum solution selected by the 10-folds
cross-validation method. The figure on the right is the true model of the
nuclear shielding tensor distribution.

See also

csdmpy [https://csdmpy.readthedocs.io/en/latest/],
Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity],
numpy array [https://docs.scipy.org/doc/numpy-1.15.0/reference/generated/numpy.ndarray.html],
Matplotlib library [https://matplotlib.org]

	1

	Srivastava, D. J., Vosegaard, T., Massiot, D., Grandinetti, P. J.,
Core Scientific Dataset Model: A lightweight and portable model and
file format for multi-dimensional scientific data. PLOS ONE,
15, 1-38, (2020).
DOI:10.1371/journal.pone.0225953 [https://doi.org/10.1371/journal.pone.0225953]

	2

	Bak M., Rasmussen J. T., Nielsen N.C., SIMPSON: A General Simulation Program for
Solid-State NMR Spectroscopy. J Magn Reson. 147, 296–330, (2000).
DOI:10.1006/jmre.2000.2179 [https://doi.org/10.1006/jmre.2000.2179]

	3

	Massiot D., Fayon F., Capron M., King I., Le Calvé S., Alonso B., et al. Modelling
one- and two-dimensional solid-state NMR spectra. Magn Reson Chem. 40, 70–76,
(2002) DOI:10.1002/mrc.984 [https://doi.org/10.1002/mrc.984]

	4

	PhySy Ltd. RMN 2.0; 2019. Available from: https://www.physyapps.com/rmn.

	5

	Dixon, W. T., Spinning sideband free and spinning sideband only NMR spectra in spinning
samples. J. Chem. Phys, 77, 1800, (1982).
DOI:10.1063/1.444076 [https://doi.org/10.1063/1.444076]

	6

	Gullion, T., Extended chemical shift modulation. J. Mag. Res., 85, 3, (1989).
DOI:10.1016/0022-2364(89)90253-9 [https://doi.org/10.1016/0022-2364(89)90253-9]

	7

	Varshavsky R., Gottlieb A., Linial M., Horn D., Novel unsupervised feature filtering
of biological data. Bioinformatics, 22, e507–e513, (2006).
DOI:10.1093/bioinformatics/btl214 [https://doi.org/10.1093/bioinformatics/btl214].

	8

	Hebiri M, Sara A. Van De Geer, The Smooth-Lasso and other l1+l2-penalized
methods, arXiv, (2010). arXiv:1003.4885v2 [https://arxiv.org/abs/1003.4885v2]

 Page Source

 API-Reference

API-Reference

	Pure anisotropic Nuclear Shielding Kernel
	Generalized Class

	Specialized Classes
	Magic Angle Flipping

	Spinning Sidebands

	Smooth Lasso

	Smooth Lasso cross-validation

	TSVDCompression

	Utils

 Page Source

 Pure anisotropic Nuclear Shielding Kernel

Pure anisotropic Nuclear Shielding Kernel

Generalized Class

	
class mrinversion.kernel.nmr.ShieldingPALineshape(anisotropic_dimension, inverse_dimension, channel, magnetic_flux_density='9.4 T', rotor_angle='54.735 deg', rotor_frequency='14 kHz', number_of_sidebands=1)

	Bases: mrinversion.kernel.base.LineShape

A generalized class for simulating the pure anisotropic NMR nuclear shielding
line-shape kernel.

	Parameters

	
	anisotropic_dimension – A Dimension object, or an equivalent dictionary
object. This dimension must represent the pure anisotropic
dimension.

	inverse_dimension – A list of two Dimension objects, or equivalent
dictionary objects representing the x-y coordinate grid.

	channel – The channel is an isotope symbol of the nuclei given as the atomic
number followed by the atomic symbol, for example, 1H, 13C, and
29Si. This nucleus must correspond to the recorded frequency
resonances.

	magnetic_flux_density – The magnetic flux density of the external static
magnetic field. The default value is 9.4 T.

	rotor_angle – The angle of the sample holder (rotor) relative to the
direction of the external magnetic field. The default value is
54.735 deg (magic angle).

	rotor_frequency – The effective sample spin rate. Depending on the NMR
sequence, this value may be less than the physical sample rotation
frequency. The default is 14 kHz.

	number_of_sidebands – The number of sidebands to simulate along the
anisotropic dimension. The default value is 1.

	
kernel(supersampling=1)

	Return the NMR nuclear shielding anisotropic line-shape kernel.

	Parameters

	supersampling – An integer. Each cell is supersampled by the factor
supersampling along every dimension.

	Returns

	A numpy array containing the line-shape kernel.

Specialized Classes

Magic Angle Flipping

	
class mrinversion.kernel.nmr.MAF(anisotropic_dimension, inverse_dimension, channel, magnetic_flux_density='9.4 T')

	Bases: mrinversion.kernel.csa_aniso.ShieldingPALineshape

A specialized class for simulating the pure anisotropic NMR nuclear shielding
line-shape kernel resulting from the 2D MAF spectra.

	Parameters

	
	anisotropic_dimension – A Dimension object, or an equivalent dictionary
object. This dimension must represent the pure anisotropic
dimension.

	inverse_dimension – A list of two Dimension objects, or equivalent
dictionary objects representing the x-y coordinate grid.

	channel – The isotope symbol of the nuclei given as the atomic number
followed by the atomic symbol, for example, 1H, 13C, and
29Si. This nucleus must correspond to the recorded frequency
resonances.

	magnetic_flux_density – The magnetic flux density of the external static
magnetic field. The default value is 9.4 T.

Assumptions:
The simulated line-shapes correspond to an infinite speed spectrum spinning at
\(90^\circ\).

	
kernel(supersampling=1)

	Return the NMR nuclear shielding anisotropic line-shape kernel.

	Parameters

	supersampling – An integer. Each cell is supersampled by the factor
supersampling along every dimension.

	Returns

	A numpy array containing the line-shape kernel.

Spinning Sidebands

	
class mrinversion.kernel.nmr.SpinningSidebands(anisotropic_dimension, inverse_dimension, channel, magnetic_flux_density='9.4 T')

	Bases: mrinversion.kernel.csa_aniso.ShieldingPALineshape

A specialized class for simulating the pure anisotropic spinning sideband
amplitudes of the nuclear shielding resonances resulting from a 2D sideband
separation spectra.

	Parameters

	
	anisotropic_dimension – A Dimension object, or an equivalent dictionary
object. This dimension must represent the pure anisotropic
dimension.

	inverse_dimension – A list of two Dimension objects, or equivalent
dictionary objects representing the x-y coordinate grid.

	channel – The isotope symbol of the nuclei given as the atomic number
followed by the atomic symbol, for example, 1H, 13C, and
29Si. This nucleus must correspond to the recorded frequency
resonances.

	magnetic_flux_density – The magnetic flux density of the external static
magnetic field. The default value is 9.4 T.

Assumption:
The simulated line-shapes correspond to a finite speed spectrum spinning at the
magic angle, \(54.735^\circ\), where the spin rate is the increment along
the anisotropic dimension.

	
kernel(supersampling=1)

	Return the NMR nuclear shielding anisotropic line-shape kernel.

	Parameters

	supersampling – An integer. Each cell is supersampled by the factor
supersampling along every dimension.

	Returns

	A numpy array containing the line-shape kernel.

 Page Source

 Smooth Lasso

Smooth Lasso

	
class mrinversion.linear_model.SmoothLasso(alpha, lambda1, inverse_dimension, max_iterations=10000, tolerance=1e-05, positive=True, method='gradient_decent')

	Bases: mrinversion.linear_model._base_l1l2.GeneralL2Lasso

The linear model trained with the combined l1 and l2 priors as the regularizer.
The method minimizes the objective function,

(10)\[\| {\bf Kf - s} \|^2_2 + \alpha \sum_{i=1}^{d} \| {\bf J}_i {\bf f} \|_2^2
 + \lambda \| {\bf f} \|_1 ,\]

where \({\bf K} \in \mathbb{R}^{m \times n}\) is the kernel,
\({\bf s} \in \mathbb{R}^{m \times m_\text{count}}\) is the known (measured)
signal, and \({\bf f} \in \mathbb{R}^{n \times m_\text{count}}\)
is the desired solution. The parameters, \(\alpha\) and \(\lambda\),
are the hyperparameters controlling the smoothness and sparsity of the
solution \({\bf f}\). The matrix \({\bf J}_i\) is given as

(11)\[{\bf J}_i = {\bf I}_{n_1} \otimes \cdots \otimes {\bf A}_{n_i}
 \otimes \cdots \otimes {\bf I}_{n_{d}},\]

where \({\bf I}_{n_i} \in \mathbb{R}^{n_i \times n_i}\) is the identity matrix,

(12)\[\begin{split}{\bf A}_{n_i} = \left(\begin{array}{ccccc}
 1 & -1 & 0 & \cdots & \vdots \\
 0 & 1 & -1 & \cdots & \vdots \\
 \vdots & \vdots & \vdots & \vdots & 0 \\
 0 & \cdots & 0 & 1 & -1
 \end{array}\right) \in \mathbb{R}^{(n_i-1)\times n_i},\end{split}\]

and the symbol \(\otimes\) is the Kronecker product. The terms,
\(\left(n_1, n_2, \cdots, n_d\right)\), are the number of points along the
respective dimensions, with the constraint that \(\prod_{i=1}^{d}n_i = n\),
where \(d\) is the total number of dimensions.

	Parameters

	
	alpha (float) – The hyperparameter, \(\alpha\).

	lambda1 (float) – The hyperparameter, \(\lambda\).

	inverse_dimension (list) – A list of csdmpy Dimension objects representing the inverse space.

	max_iterations (int) – The maximum number of iterations allowed when solving the problem. The default
value is 10000.

	tolerance (float) – The tolerance at which the solution is considered converged. The default value
is 1e-5.

	positive (bool) – If True, the amplitudes in the solution, \({\bf f}\), is contrained to only
positive values, else the solution may contain positive and negative amplitudes.
The default is True.

	
f

	A ndarray of shape (m_count, nd, …, n1, n0) representing the
solution, \({\bf f} \in \mathbb{R}^{m_\text{count} \times n_d \times
\cdots n_1 \times n_0}\).

	Type

	ndarray or CSDM object.

	
n_iter

	The number of iterations required to reach the specified tolerance.

	Type

	int

Methods Documentation

	
fit(K, s)

	Fit the model using the coordinate descent method from scikit-learn.

	Parameters

	
	K (ndarray) – The \(m \times n\) kernel matrix, \({\bf K}\). A numpy array of
shape (m, n).

	s (ndarray or CSDM object.) – A csdm object or an equivalent numpy array holding the signal,
\({\bf s}\), as a \(m \times m_\text{count}\) matrix.

	
predict(K)

	Predict the signal using the linear model.

	Parameters

	K (ndarray) – A \(m \times n\) kernel matrix, \({\bf K}\). A numpy array of shape
(m, n).

	Returns

	A numpy array of shape (m, m_count) with the predicted values

	Return type

	ndarray

	
residuals(K, s)

	Return the residual as the difference the data and the prediced data(fit),
following

(13)\[\text{residuals} = {\bf s - Kf^*}\]

where \({\bf f^*}\) is the optimum solution.

	Parameters

	
	K (ndarray.) – A \(m \times n\) kernel matrix, \({\bf K}\). A numpy array of shape
(m, n).

	s (ndarray ot CSDM object.) – A csdm object or a \(m \times m_\text{count}\) signal matrix,
\({\bf s}\).

	Returns

	If s is a csdm object, returns a csdm object with the residuals. If s
is a numpy array, return a \(m \times m_\text{count}\) residue matrix.
csdm object

	Return type

	ndarray or CSDM object.

	
score(K, s, sample_weights=None)

	The coefficient of determination, \(R^2\), of the prediction.
For more information, read scikit-learn documentation.

 Page Source

 Smooth Lasso cross-validation

Smooth Lasso cross-validation

	
class mrinversion.linear_model.SmoothLassoCV(alphas, lambdas, inverse_dimension, folds=10, max_iterations=10000, tolerance=1e-05, positive=True, sigma=0.0, randomize=False, times=2, verbose=False, n_jobs=- 1, method='gradient_decent')

	Bases: mrinversion.linear_model._base_l1l2.GeneralL2LassoCV

The linear model trained with the combined l1 and l2 priors as the
regularizer. The method minimizes the objective function,

(14)\[\| {\bf Kf - s} \|^2_2 + \alpha \sum_{i=1}^{d} \| {\bf J}_i {\bf f} \|_2^2
 + \lambda \| {\bf f} \|_1 ,\]

where \({\bf K} \in \mathbb{R}^{m \times n}\) is the kernel,
\({\bf s} \in \mathbb{R}^{m \times m_\text{count}}\) is the known signal
containing noise, and \({\bf f} \in \mathbb{R}^{n \times m_\text{count}}\)
is the desired solution. The parameters, \(\alpha\) and \(\lambda\),
are the hyperparameters controlling the smoothness and sparsity of the
solution \({\bf f}\).
The matrix \({\bf J}_i\) is given as

(15)\[{\bf J}_i = {\bf I}_{n_1} \otimes \cdots \otimes {\bf A}_{n_i}
 \otimes \cdots \otimes {\bf I}_{n_{d}},\]

where \({\bf I}_{n_i} \in \mathbb{R}^{n_i \times n_i}\) is the identity
matrix,

(16)\[\begin{split}{\bf A}_{n_i} = \left(\begin{array}{ccccc}
 1 & -1 & 0 & \cdots & \vdots \\
 0 & 1 & -1 & \cdots & \vdots \\
 \vdots & \vdots & \vdots & \vdots & 0 \\
 0 & \cdots & 0 & 1 & -1
 \end{array}\right) \in \mathbb{R}^{(n_i-1)\times n_i},\end{split}\]

and the symbol \(\otimes\) is the Kronecker product. The terms,
\(\left(n_1, n_2, \cdots, n_d\right)\), are the number of points along the
respective dimensions, with the constraint that \(\prod_{i=1}^{d}n_i = n\),
where \(d\) is the total number of dimensions.

The cross-validation is carried out using a stratified splitting of the signal.

	Parameters

	
	alphas (ndarray) – A list of \(\alpha\) hyperparameters.

	lambdas (ndarray) – A list of \(\lambda\) hyperparameters.

	inverse_dimension (list) – A list of csdmpy Dimension objects representing the inverse space.

	folds (int) – The number of folds used in cross-validation.The default is 10.

	max_iterations (int) – The maximum number of iterations allowed when solving the problem. The default
value is 10000.

	tolerance (float) – The tolerance at which the solution is considered converged. The default value
is 1e-5.

	positive (bool) – If True, the amplitudes in the solution, \({\bf f}\), is contrained to only
positive values, else the solution may contain positive and negative amplitudes.
The default is True.

	sigma (float) – The standard deviation of the noise in the signal. The default is 0.0.

	sigma – The standard deviation of the noise in the signal. The default is 0.0.

	randomize (bool) – If true, the folds are created by randomly assigning the samples to each fold.
If false, a stratified sampled is used to generate folds. The default is False.

	times (int) – The number of times to randomized n-folds are created. Only applicable when
randomize attribute is True.

	verbose (bool) – If true, prints the process.

	n_jobs (int) – The number of CPUs used for computation. The default is -1, that is, all
available CPUs are used.

	
f

	A ndarray of shape (m_count, nd, …, n1, n0). The solution,
\({\bf f} \in \mathbb{R}^{m_\text{count} \times n_d \times \cdots n_1
\times n_0}\) or an equivalent CSDM object.

	Type

	ndarray or CSDM object.

	
n_iter

	The number of iterations required to reach the specified tolerance.

	Type

	int.

	
hyperparameters

	A dictionary with the \(\alpha\) and :math:lambda` hyperparameters.

	Type

	dict.

	
cross_validation_curve

	The cross-validation error metric determined as the mean square error.

	Type

	CSDM object.

Methods Documentation

	
fit(K, s)

	Fit the model using the coordinate descent method from scikit-learn for
all alpha anf lambda values using the n-folds cross-validation technique.
The cross-validation metric is the mean squared error.

	Parameters

	
	K – A \(m \times n\) kernel matrix, \({\bf K}\). A numpy array of
shape (m, n).

	s – A \(m \times m_\text{count}\) signal matrix, \({\bf s}\) as a
csdm object or a numpy array or shape (m, m_count).

	
predict(K)

	Predict the signal using the linear model.

	Parameters

	K – A \(m \times n\) kernel matrix, \({\bf K}\). A numpy array of
shape (m, n).

	Returns

	A numpy array of shape (m, m_count) with the predicted values.

	
residuals(K, s)

	Return the residual as the difference the data and the prediced data(fit),
following

(17)\[\text{residuals} = {\bf s - Kf^*}\]

where \({\bf f^*}\) is the optimum solution.

	Parameters

	
	K – A \(m \times n\) kernel matrix, \({\bf K}\). A numpy array of
shape (m, n).

	s – A csdm object or a \(m \times m_\text{count}\) signal matrix,
\({\bf s}\).

	Returns

	If s is a csdm object, returns a csdm object with the residuals. If s
is a numpy array, return a \(m \times m_\text{count}\) residue matrix.

 Page Source

 TSVDCompression

TSVDCompression

	
class mrinversion.linear_model.TSVDCompression(K, s, r=None)

	Bases: object

SVD compression.

	Parameters

	
	K – The kernel.

	s – The data.

	r – The number of singular values used in data compression.

	
truncation_index

	The number of singular values retained.

	Type

	int

	
compressed_K

	The compressed kernel.

	Type

	ndarray

	
compressed_s

	The compressed data.

	Type

	ndarray of CSDM object

 Page Source

 Utils

Utils

	
mrinversion.kernel.utils.x_y_to_zeta_eta(x, y)

	Convert the coordinates \((x,y)\) to \((\zeta, \eta)\) using the
following definition,

(18)\[\begin{split}\left.\begin{array}{rl}
\zeta &= \sqrt{x^2 + y^2}, \\
\eta &= \frac{4}{\pi} \tan^{-1} \left| \frac{x}{y} \right|
\end{array} {~~~~~~~~} \right\} {~~~~~~~~} |x| \le |y|.\end{split}\]

(19)\[\begin{split}\left.\begin{array}{rl}
\zeta &= -\sqrt{x^2 + y^2}, \\
\eta &= \frac{4}{\pi} \tan^{-1} \left| \frac{y}{x} \right|
\end{array} {~~~~~~~~} \right\} {~~~~~~~~} |x| > |y|.\end{split}\]

	Parameters

	
	x – floats or Quantity object. The coordinate x.

	y – floats or Quantity object. The coordinate y.

	Returns

	A list of two ndarrays. The first array is the \(\zeta\)
coordinates. The second array is the \(\eta\) coordinates.

	
mrinversion.kernel.utils.zeta_eta_to_x_y(zeta, eta)

	Convert the coordinates \((\zeta,\eta)\) to \((x, y)\) using the
following definition,

(20)\[\begin{split}\left. \begin{array}{rl}
x &= |\zeta| \sin\theta, \\
y &= |\zeta| \cos\theta
\end{array} {~~~~~~~~} \right\} {~~~~~~~~} \zeta \ge 0\end{split}\]

(21)\[\begin{split}\left. \begin{array}{rl}
x &= |\zeta| \cos\theta, \\
y &= |\zeta| \sin\theta
\end{array} {~~~~~~~~} \right\} {~~~~~~~~} \zeta < 0\end{split}\]

where \(\theta = \frac{\pi}{4}\eta\).

	Parameters

	
	x – ndarray or list of floats. The coordinate x.

	y – ndarray or list of floats. The coordinate y.

	Returns

	A list of ndarrays. The first array holds the coordinate \(x\). The
second array holds the coordinates \(y\).

	
mrinversion.utils.get_polar_grids(ax, ticks=None, offset=0)

	Generate a piece-wise polar grid of Haeberlen parameters, zeta and eta.

	Parameters

	
	ax – Matplotlib Axes.

	ticks – Tick coordinates where radial grids are drawn. The value can be a list
or a numpy array. The default value is None.

	offset – The grid is drawn at an offset away from the origin.

	
mrinversion.utils.to_Haeberlen_grid(csdm_object, zeta, eta, n=5)

	Convert the three-dimensional p(iso, x, y) to p(iso, zeta, eta) tensor
distribution.

	Parameters

	
	csdm_object (CSDM) – A CSDM object containing the 3D p(iso, x, y) distribution.

	zeta (CSDM.Dimension) – A CSDM dimension object describing the zeta dimension.

	eta (CSDM.Dimension) – A CSDM dimension object describing the eta dimension.

	n (int) – An interger used in linear interpolation of the data. The default is 5.

	
mrinversion.utils.plot_3d(ax, csdm_object, elev=28, azim=-150, x_lim=None, y_lim=None, z_lim=None, max_2d=None, max_1d=None, cmap=<matplotlib.colors.LinearSegmentedColormap object>, box=False, clip_percent=0.0, linewidth=1, alpha=0.15, **kwargs)

	Generate a 3D density plot with 2D contour and 1D projections.

	Parameters

	
	ax – Matplotlib Axes to render the plot.

	csdm_object – A 3D{1} CSDM object holding the data.

	elev – (optional) The 3D view angle, elevation angle in the z plane.

	azim – (optional) The 3D view angle, azimuth angle in the x-y plane.

	x_lim – (optional) The x limit given as a list, [x_min, x_max].

	y_lim – (optional) The y limit given as a list, [y_min, y_max].

	z_lim – (optional) The z limit given as a list, [z_min, z_max].

	max_2d – (Optional) The normalization factor of the 2D contour projections. The
attribute is meaningful when multiple 3D datasets are viewed on the same
plot. The value is given as a list, [yz, xz, xy], where ij is the
maximum of the projection onto the ij plane, \(i,j \in [x, y, z]\).

	max_1d – (Optional) The normalization factor of the 1D projections. The
attribute is meaningful when multiple 3D datasets are viewed on the same
plot. The value is given as a list, [x, y, z], where i is the
maximum of the projection onto the i axis, \(i \in [x, y, z]\).

	cmap – (Optional) The colormap used in rendering the volumetric plot. The same
colormap is used for the 2D contour projections. For 1D plots, the first
color in the colormap scheme is used for the line color.

	box – (Optional) If True, draw a box around the 3D data region.

	clip_percent – (Optional) The amplitudes of the dataset below the given percent
is made transparent for the volumetric plot.

	linewidth – (Optional) The linewidth of the 2D countours, 1D plots and box.

	alpha – (Optional) The amount of alpha(transparency) applied in rendering the 3D
volume.

 Page Source

 Example Gallery

Example Gallery

The following are the examples of the statistical learning of nuclear shielding
tensor parameters from pure anisotropic NMR spectrum.

One-dimensional synthetic datasets

This sub-section is for illustration only. For the practical application of the
inversion method, refer to the next sub-section.

[image: Unimodal distribution]

Figure 7 Unimodal distribution

[image: Bimodal distribution]

Figure 8 Bimodal distribution

[image: Unimodal distribution]

Figure 9 Unimodal distribution

[image: Bimodal distribution]

Figure 10 Bimodal distribution

Spinning sideband spectrum (Experiment)

The following are the examples of the statistical learning of nuclear shielding
tensor from pure anisotropic spinning sideband spectrum.

[image: 2D MAT data of KMg0.5O 4.SiO2 glass]

Figure 11 2D MAT data of KMg0.5O 4.SiO2 glass

Magic angle flipping (Experiment)

The following are the examples of the statistical learning method applied in
determining a distribution of the nuclear shielding tensor parameters from a 2D MAF NMR
spectrum correlating the isotropic to the anisotropic frequency contributions.

[image: 2D MAF data of Rb2O.2.25SiO2 glass]

Figure 12 2D MAF data of Rb2O.2.25SiO2 glass

[image: 2D MAF data of Na2O.4.7SiO2 glass]

Figure 13 2D MAF data of Na2O.4.7SiO2 glass

[image: 2D MAF data of Cs2O.4.72SiO2 glass]

Figure 14 2D MAF data of Cs2O.4.72SiO2 glass

[image: 2D MAF data of 2Na2O.3SiO2 glass]

Figure 15 2D MAF data of 2Na2O.3SiO2 glass

[image: 2D MAF data of MgO.SiO2 glass]

Figure 16 2D MAF data of MgO.SiO2 glass

[image: 2D MAF data of CaO.SiO2 glass]

Figure 17 2D MAF data of CaO.SiO2 glass

Download all examples in Python source code: auto_examples_python.zip

Download all examples in Jupyter notebooks: auto_examples_jupyter.zip

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

 Page Source

 Unimodal distribution

Note

Click here
to download the full example code or to run this example in your browser via Binder

Unimodal distribution

The following example demonstrates the statistical learning based determination of
the nuclear shielding tensor parameters from a one-dimensional cross-section of a
spinning sideband correlation spectrum. In this example, we use a synthetic
sideband amplitude spectrum from a unimodal tensor distribution.

Before getting started

Import all relevant packages.

import csdmpy as cp
import matplotlib.pyplot as plt
import numpy as np

from mrinversion.kernel.nmr import ShieldingPALineshape
from mrinversion.linear_model import SmoothLasso, SmoothLassoCV, TSVDCompression
from mrinversion.utils import get_polar_grids

Setup for the matplotlib figures

function for 2D x-y plot.
def plot2D(ax, csdm_object, title=""):
 # convert the dimension coordinates of the csdm_object from Hz to pmm.
 _ = [item.to("ppm", "nmr_frequency_ratio") for item in csdm_object.dimensions]

 levels = (np.arange(9) + 1) / 10
 plt.figure(figsize=(4.5, 3.5))
 ax.contourf(csdm_object, cmap="gist_ncar", levels=levels)
 ax.grid(None)
 ax.set_title(title)
 get_polar_grids(ax)
 ax.set_aspect("equal")

Dataset setup

Import the dataset

Load the dataset. Here, we import the dataset as a CSDM data-object.

the 1D spinning sideband cross-section data in csdm format
filename = "https://osu.box.com/shared/static/kehokr5op0amkfp5auyd498nblcdr1xy.csdf"
data_object = cp.load(filename)

convert the data dimension from `Hz` to `ppm`.
data_object.dimensions[0].to("ppm", "nmr_frequency_ratio")

The variable data_object holds the 1D dataset. For comparison, let’s
also import the true tensor parameter distribution from which the synthetic 1D pure
anisotropic spinning sideband cross-section amplitudes is simulated.

datafile = "https://osu.box.com/shared/static/s5wpm26w4cv3w64qjhouqu458ch4z0nd.csdf"
true_data_object = cp.load(datafile)

The plot of the 1D sideband cross-section along with the 2D true tensor parameter
distribution of the synthetic dataset is shown below.

the plot of the 1D MAF cross-section dataset.
_, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})
ax[0].plot(data_object)
ax[0].invert_xaxis()

the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout()
plt.show()

	[image: True distribution]

	[image: plot 1D 1 sideband]

Linear Inversion setup

Dimension setup

Anisotropic-dimension: The dimension of the dataset that holds the pure
anisotropic spinning sidebands.

anisotropic_dimension = data_object.dimensions[0]

x-y dimensions: The two inverse dimensions corresponding to the x and
y-axis of the x-y grid.

inverse_dimension = [
 cp.LinearDimension(count=25, increment="370 Hz", label="x"), # the `x`-dimension.
 cp.LinearDimension(count=25, increment="370 Hz", label="y"), # the `y`-dimension.
]

Generating the kernel

For sideband datasets, the line-shape kernel corresponds to the pure anisotropic
nuclear shielding spinning sideband spectra. Use the
ShieldingPALineshape class to generate
the sideband kernel.

lineshape = ShieldingPALineshape(
 anisotropic_dimension=anisotropic_dimension,
 inverse_dimension=inverse_dimension,
 channel="29Si",
 magnetic_flux_density="9.4 T",
 rotor_angle="54.735 deg",
 rotor_frequency="625 Hz",
 number_of_sidebands=32,
)

Here, lineshape is an instance of the
ShieldingPALineshape class. The required
arguments of this class are the anisotropic_dimension, inverse_dimension, and
channel. We have already defined the first two arguments in the previous
sub-section. The value of the channel argument is the observed nucleus. In this
example, this value is ‘29Si’.
The remaining arguments, such as the magnetic_flux_density, rotor_angle,
and rotor_frequency, are set to match the conditions under which the spectrum
was acquired. Note, the rotor frequency is the effective anisotropic modulation
frequency, which may be less than the physical rotor frequency. The
number of sidebands is usually the number of points along the sideband dimension.

Once the ShieldingPALineshape instance is created, use the
kernel() method of the
instance to generate the sideband kernel.

K = lineshape.kernel(supersampling=1)

Data Compression

Data compression is optional but recommended. It may reduce the size of the
inverse problem and, thus, further computation time.

new_system = TSVDCompression(K, data_object)
compressed_K = new_system.compressed_K
compressed_s = new_system.compressed_s

print(f"truncation_index = {new_system.truncation_index}")

Out:

compression factor = 1.032258064516129
truncation_index = 31

Solving the inverse problem

Smooth-LASSO problem

Solve the smooth-lasso problem. You may choose to skip this step and proceed to the
statistical learning method. Usually, the statistical learning method is a
time-consuming process that solves the smooth-lasso problem over a range of
predefined hyperparameters.
If you are unsure what range of hyperparameters to use, you can use this step for
a quick look into the possible solution by giving a guess value for the \(\alpha\)
and \(\lambda\) hyperparameters, and then decide on the hyperparameters range
accordingly.

guess alpha and lambda values.
s_lasso = SmoothLasso(alpha=5e-5, lambda1=5e-6, inverse_dimension=inverse_dimension)
s_lasso.fit(K=compressed_K, s=compressed_s)
f_sol = s_lasso.f

Here, f_sol is the solution corresponding to hyperparameters
\(\alpha=5\times10^{-5}\) and \(\lambda=5\times 10^{-6}\). The plot of this
solution is

_, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})

the plot of the guess tensor distribution solution.
plot2D(ax[0], f_sol / f_sol.max(), title="Guess distribution")

the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout()
plt.show()

	[image: Guess distribution, True distribution]

	[image: plot 1D 1 sideband]

	[image: plot 1D 1 sideband]

Predicted spectrum

You may also evaluate the predicted spectrum from the above solution following

residuals = s_lasso.residuals(K, data_object)
predicted_spectrum = data_object - residuals

plt.figure(figsize=(4, 3))
plt.subplot(projection="csdm")
plt.plot(data_object, color="black", label="spectrum") # the original spectrum
plt.plot(predicted_spectrum, color="red", label="prediction") # the predicted spectrum
plt.gca().invert_xaxis()
plt.legend()
plt.tight_layout()
plt.show()

[image: plot 1D 1 sideband]
As you can see from the predicted spectrum, our guess isn’t far from the optimum
hyperparameters. Let’s create a search grid about the guess hyperparameters and run
a cross-validation method for selection.

Statistical learning of the tensors

Smooth LASSO cross-validation

Create a guess range of values for the \(\alpha\) and \(\lambda\)
hyperparameters.
The following code generates a range of \(\lambda\) and \(\alpha\) values
that are uniformly sampled on the log scale.

lambdas = 10 ** (-5 - 1 * (np.arange(6) / 5))
alphas = 10 ** (-4 - 2 * (np.arange(6) / 5))

set up cross validation smooth lasso method
s_lasso_cv = SmoothLassoCV(
 alphas=alphas,
 lambdas=lambdas,
 inverse_dimension=inverse_dimension,
 sigma=0.005,
 folds=10,
)
run the fit using the compressed kernel and compressed signal.
s_lasso_cv.fit(compressed_K, compressed_s)

The optimum hyper-parameters

Use the hyperparameters attribute of
the instance for the optimum hyper-parameters, \(\alpha\) and \(\lambda\),
determined from the cross-validation.

print(s_lasso_cv.hyperparameters)

Out:

{'alpha': 2.5118864315095823e-06, 'lambda': 1.584893192461114e-06}

The cross-validation surface

Optionally, you may want to visualize the cross-validation error curve/surface. Use
the cross_validation_curve attribute
of the instance, as follows. The cross-validation metric is the mean square error
(MSE).

cv_curve = s_lasso_cv.cross_validation_curve

plot of the cross-validation curve
plt.figure(figsize=(5, 3.5))
ax = plt.subplot(projection="csdm")
ax.contour(np.log10(s_lasso_cv.cross_validation_curve), levels=25)
ax.scatter(
 -np.log10(s_lasso_cv.hyperparameters["alpha"]),
 -np.log10(s_lasso_cv.hyperparameters["lambda"]),
 marker="x",
 color="k",
)
plt.tight_layout(pad=0.5)
plt.show()

[image: plot 1D 1 sideband]

The optimum solution

The f attribute of the instance holds
the solution.

f_sol = s_lasso_cv.f

The corresponding plot of the solution, along with the true tensor distribution, is
shown below.

_, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})

the plot of the tensor distribution solution.
plot2D(ax[0], f_sol / f_sol.max(), title="Optimum distribution")

the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout()
plt.show()

	[image: Optimum distribution, True distribution]

	[image: plot 1D 1 sideband]

	[image: plot 1D 1 sideband]

Total running time of the script: (0 minutes 27.449 seconds)

[image: Launch binder]
 [https://mybinder.org/v2/gh/DeepanshS/mrinversion/master?urlpath=lab/tree/docs/_build/html/../../notebooks/auto_examples/synthetic/plot_1D_1_sideband.ipynb]

Download Python source code: plot_1D_1_sideband.py

Download Jupyter notebook: plot_1D_1_sideband.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

 Page Source

 Bimodal distribution

Note

Click here
to download the full example code or to run this example in your browser via Binder

Bimodal distribution

The following example demonstrates the statistical learning based determination of
nuclear shielding tensor parameters from a one-dimensional cross-section of a
spinning sideband correlation spectrum. In this example, we use a synthetic
sideband amplitude spectrum from a bimodal tensor distribution.

Before getting started

Import all relevant packages.

import csdmpy as cp
import matplotlib.pyplot as plt
import numpy as np

from mrinversion.kernel.nmr import ShieldingPALineshape
from mrinversion.linear_model import SmoothLasso, SmoothLassoCV, TSVDCompression
from mrinversion.utils import get_polar_grids

Setup for the matplotlib figures

function for 2D x-y plot.
def plot2D(ax, csdm_object, title=""):
 # convert the dimension coordinates of the csdm_object from Hz to pmm.
 _ = [item.to("ppm", "nmr_frequency_ratio") for item in csdm_object.dimensions]

 levels = (np.arange(9) + 1) / 10
 plt.figure(figsize=(4.5, 3.5))
 ax.contourf(csdm_object, cmap="gist_ncar", levels=levels)
 ax.grid(None)
 ax.set_title(title)
 get_polar_grids(ax)
 ax.set_aspect("equal")

Dataset setup

Import the dataset

Load the dataset. Here, we import the dataset as a CSDM data-object.

the 1D spinning sideband cross-section data in csdm format
filename = "https://osu.box.com/shared/static/wjbhb6sif76mxfgndetew8mnrq6pw4pj.csdf"
data_object = cp.load(filename)

convert the data dimension from `Hz` to `ppm`.
data_object.dimensions[0].to("ppm", "nmr_frequency_ratio")

The variable data_object holds the 1D dataset. For comparison, let’s
also import the true tensor parameter distribution from which the synthetic 1D pure
anisotropic spinning sideband cross-section amplitudes is simulated.

datafile = "https://osu.box.com/shared/static/xesah85nd2gtm9yefazmladi697khuwi.csdf"
true_data_object = cp.load(datafile)

The plot of the 1D sideband cross-section along with the 2D true tensor parameter
distribution of the synthetic dataset is shown below.

the plot of the 1D MAF cross-section dataset.
_, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})
ax[0].plot(data_object)
ax[0].invert_xaxis()

the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout()
plt.show()

	[image: True distribution]

	[image: plot 1D 2 sideband bimodal]

Linear Inversion setup

Dimension setup

Anisotropic-dimension: The dimension of the dataset that holds the pure
anisotropic spinning sidebands.

anisotropic_dimension = data_object.dimensions[0]

x-y dimensions: The two inverse dimensions corresponding to the x and
y-axis of the x-y grid.

inverse_dimension = [
 cp.LinearDimension(count=25, increment="370 Hz", label="x"), # the `x`-dimension.
 cp.LinearDimension(count=25, increment="370 Hz", label="y"), # the `y`-dimension.
]

Generating the kernel

For sideband datasets, the line-shape kernel corresponds to the pure anisotropic
nuclear shielding spinning sideband spectra. Use the
ShieldingPALineshape class to generate
the sideband kernel.

lineshape = ShieldingPALineshape(
 anisotropic_dimension=anisotropic_dimension,
 inverse_dimension=inverse_dimension,
 channel="29Si",
 magnetic_flux_density="9.4 T",
 rotor_angle="54.735 deg",
 rotor_frequency="625 Hz",
 number_of_sidebands=32,
)
K = lineshape.kernel(supersampling=1)

Data Compression

Data compression is optional but recommended. It may reduce the size of the
inverse problem and, thus, further computation time.

new_system = TSVDCompression(K, data_object)
compressed_K = new_system.compressed_K
compressed_s = new_system.compressed_s

print(f"truncation_index = {new_system.truncation_index}")

Out:

compression factor = 1.032258064516129
truncation_index = 31

Solving the inverse problem

Smooth-LASSO problem

Solve the smooth-lasso problem. You may choose to skip this step and proceed to the
statistical learning method. Usually, the statistical learning method is a
time-consuming process that solves the smooth-lasso problem over a range of
predefined hyperparameters.
If you are unsure what range of hyperparameters to use, you can use this step for
a quick look into the possible solution by giving a guess value for the \(\alpha\)
and \(\lambda\) hyperparameters, and then decide on the hyperparameters range
accordingly.

guess alpha and lambda values.
s_lasso = SmoothLasso(alpha=5e-5, lambda1=5e-6, inverse_dimension=inverse_dimension)
s_lasso.fit(K=compressed_K, s=compressed_s)
f_sol = s_lasso.f

Here, f_sol is the solution corresponding to hyperparameters
\(\alpha=5\times10^{-5}\) and \(\lambda=5\times 10^{-6}\). The plot of this
solution is

_, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})

the plot of the guess tensor distribution solution.
plot2D(ax[0], f_sol / f_sol.max(), title="Guess distribution")

the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout()
plt.show()

	[image: Guess distribution, True distribution]

	[image: plot 1D 2 sideband bimodal]

	[image: plot 1D 2 sideband bimodal]

Predicted spectrum

You may also evaluate the predicted spectrum from the above solution following

residuals = s_lasso.residuals(K, data_object)
predicted_spectrum = data_object - residuals

plt.figure(figsize=(4, 3))
plt.subplot(projection="csdm")
plt.plot(data_object, color="black", label="spectrum") # the original spectrum
plt.plot(predicted_spectrum, color="red", label="prediction") # the predicted spectrum
plt.gca().invert_xaxis()
plt.legend()
plt.tight_layout()
plt.show()

[image: plot 1D 2 sideband bimodal]
As you can see from the predicted spectrum, our guess isn’t far from the optimum
hyperparameters. Let’s create a search grid about the guess hyperparameters and run
a cross-validation method for selection.

Statistical learning of the tensors

Smooth LASSO cross-validation

Create a guess range of values for the \(\alpha\) and \(\lambda\)
hyperparameters.
The following code generates a range of \(\lambda\) and \(\alpha\) values
that are uniformly sampled on the log scale.

lambdas = 10 ** (-5 - 1 * (np.arange(6) / 5))
alphas = 10 ** (-4 - 2 * (np.arange(6) / 5))

set up cross validation smooth lasso method
s_lasso_cv = SmoothLassoCV(
 alphas=alphas,
 lambdas=lambdas,
 inverse_dimension=inverse_dimension,
 sigma=0.005,
 folds=10,
)
run the fit using the compressed kernel and compressed signal.
s_lasso_cv.fit(compressed_K, compressed_s)

The optimum hyper-parameters

Use the hyperparameters attribute of
the instance for the optimum hyper-parameters, \(\alpha\) and \(\lambda\),
determined from the cross-validation.

print(s_lasso_cv.hyperparameters)

Out:

{'alpha': 1.584893192461114e-05, 'lambda': 2.5118864315095823e-06}

The cross-validation surface

Optionally, you may want to visualize the cross-validation error curve/surface. Use
the cross_validation_curve attribute
of the instance, as follows. The cross-validation metric is the mean square error
(MSE).

cv_curve = s_lasso_cv.cross_validation_curve

plot of the cross-validation curve
plt.figure(figsize=(5, 3.5))
ax = plt.subplot(projection="csdm")
ax.contour(np.log10(s_lasso_cv.cross_validation_curve), levels=25)
ax.scatter(
 -np.log10(s_lasso_cv.hyperparameters["alpha"]),
 -np.log10(s_lasso_cv.hyperparameters["lambda"]),
 marker="x",
 color="k",
)
plt.tight_layout(pad=0.5)
plt.show()

[image: plot 1D 2 sideband bimodal]

The optimum solution

The f attribute of the instance holds
the solution.

f_sol = s_lasso_cv.f

The corresponding plot of the solution, along with the true tensor distribution, is
shown below.

_, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})

the plot of the tensor distribution solution.
plot2D(ax[0], f_sol / f_sol.max(), title="Optimum distribution")

the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout()
plt.show()

	[image: Optimum distribution, True distribution]

	[image: plot 1D 2 sideband bimodal]

	[image: plot 1D 2 sideband bimodal]

Total running time of the script: (0 minutes 31.118 seconds)

[image: Launch binder]
 [https://mybinder.org/v2/gh/DeepanshS/mrinversion/master?urlpath=lab/tree/docs/_build/html/../../notebooks/auto_examples/synthetic/plot_1D_2_sideband_bimodal.ipynb]

Download Python source code: plot_1D_2_sideband_bimodal.py

Download Jupyter notebook: plot_1D_2_sideband_bimodal.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

 Page Source

 Unimodal distribution

Note

Click here
to download the full example code or to run this example in your browser via Binder

Unimodal distribution

The following example demonstrates the statistical learning based determination of
the nuclear shielding tensor parameters from a one-dimensional cross-section of a
magic-angle flipping (MAF) spectrum. In this example, we use a synthetic MAF
lineshape from a unimodal tensor distribution.

Before getting started

Import all relevant packages.

import csdmpy as cp
import matplotlib.pyplot as plt
import numpy as np

from mrinversion.kernel.nmr import ShieldingPALineshape
from mrinversion.linear_model import SmoothLasso, SmoothLassoCV, TSVDCompression
from mrinversion.utils import get_polar_grids

Setup for the matplotlib figures

function for 2D x-y plot.
def plot2D(ax, csdm_object, title=""):
 # convert the dimension coordinates of the csdm_object from Hz to pmm.
 _ = [item.to("ppm", "nmr_frequency_ratio") for item in csdm_object.dimensions]

 levels = (np.arange(9) + 1) / 10
 plt.figure(figsize=(4.5, 3.5))
 ax.contourf(csdm_object, cmap="gist_ncar", levels=levels)
 ax.grid(None)
 ax.set_title(title)
 get_polar_grids(ax)
 ax.set_aspect("equal")

Dataset setup

Import the dataset

Load the dataset. Here, we import the dataset as a CSDM data-object.

the 1D MAF cross-section data in csdm format
filename = "https://osu.box.com/shared/static/puxfgdh25rru1q3li124anylkgup8rdp.csdf"
data_object = cp.load(filename)

convert the data dimension from `Hz` to `ppm`.
data_object.dimensions[0].to("ppm", "nmr_frequency_ratio")

The variable data_object holds the 1D MAF cross-section. For comparison, let’s
also import the true tensor parameter distribution from which the synthetic 1D pure
anisotropic MAF cross-section line-shape is simulated.

datafile = "https://osu.box.com/shared/static/s5wpm26w4cv3w64qjhouqu458ch4z0nd.csdf"
true_data_object = cp.load(datafile)

The plot of the 1D MAF cross-section along with the 2D true tensor parameter
distribution of the synthetic dataset is shown below.

the plot of the 1D MAF cross-section dataset.
_, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})
ax[0].plot(data_object)
ax[0].invert_xaxis()

the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout()
plt.show()

	[image: True distribution]

	[image: plot 1D 3 MAF]

Linear Inversion setup

Dimension setup

Anisotropic-dimension: The dimension of the dataset that holds the pure
anisotropic frequency contributions, which in this case, is the only dimension.

anisotropic_dimension = data_object.dimensions[0]

x-y dimensions: The two inverse dimensions corresponding to the x and
y-axis of the x-y grid.

inverse_dimension = [
 cp.LinearDimension(count=25, increment="370 Hz", label="x"), # the `x`-dimension.
 cp.LinearDimension(count=25, increment="370 Hz", label="y"), # the `y`-dimension.
]

Generating the kernel

For MAF datasets, the line-shape kernel corresponds to the pure nuclear shielding
anisotropy line-shapes. Use the
ShieldingPALineshape class to generate a
shielding line-shape kernel.

lineshape = ShieldingPALineshape(
 anisotropic_dimension=anisotropic_dimension,
 inverse_dimension=inverse_dimension,
 channel="29Si",
 magnetic_flux_density="9.4 T",
 rotor_angle="90 deg",
 rotor_frequency="14 kHz",
 number_of_sidebands=4,
)

Here, lineshape is an instance of the
ShieldingPALineshape class. The required
arguments of this class are the anisotropic_dimension, inverse_dimension, and
channel. We have already defined the first two arguments in the previous
sub-section. The value of the channel argument is the nucleus observed in the MAF
experiment. In this example, this value is ‘29Si’.
The remaining arguments, such as the magnetic_flux_density, rotor_angle,
and rotor_frequency, are set to match the conditions under which the spectrum
was acquired. The value of the number_of_sidebands argument is the number of
sidebands calculated for each line-shape within the kernel.

Once the ShieldingPALineshape instance is created, use the
kernel() method of the
instance to generate the MAF line-shape kernel.

K = lineshape.kernel(supersampling=1)

Data Compression

Data compression is optional but recommended. It may reduce the size of the
inverse problem and, thus, further computation time.

new_system = TSVDCompression(K, data_object)
compressed_K = new_system.compressed_K
compressed_s = new_system.compressed_s

print(f"truncation_index = {new_system.truncation_index}")

Out:

compression factor = 1.5737704918032787
truncation_index = 61

Solving the inverse problem

Smooth-LASSO problem

Solve the smooth-lasso problem. You may choose to skip this step and proceed to the
statistical learning method. Usually, the statistical learning method is a
time-consuming process that solves the smooth-lasso problem over a range of
predefined hyperparameters.
If you are unsure what range of hyperparameters to use, you can use this step for
a quick look into the possible solution by giving a guess value for the \(\alpha\)
and \(\lambda\) hyperparameters, and then decide on the hyperparameters range
accordingly.

guess alpha and lambda values.
s_lasso = SmoothLasso(alpha=5e-5, lambda1=5e-6, inverse_dimension=inverse_dimension)
s_lasso.fit(K=compressed_K, s=compressed_s)
f_sol = s_lasso.f

Here, f_sol is the solution corresponding to hyperparameters
\(\alpha=5\times10^{-5}\) and \(\lambda=5\times 10^{-6}\). The plot of this
solution is

_, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})

the plot of the guess tensor distribution solution.
plot2D(ax[0], f_sol / f_sol.max(), title="Guess distribution")

the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout()
plt.show()

	[image: Guess distribution, True distribution]

	[image: plot 1D 3 MAF]

	[image: plot 1D 3 MAF]

Predicted spectrum

You may also evaluate the predicted spectrum from the above solution following

residuals = s_lasso.residuals(K, data_object)
predicted_spectrum = data_object - residuals

plt.figure(figsize=(4, 3))
plt.subplot(projection="csdm")
plt.plot(data_object, color="black", label="spectrum") # the original spectrum
plt.plot(predicted_spectrum, color="red", label="prediction") # the predicted spectrum
plt.gca().invert_xaxis()
plt.legend()
plt.tight_layout()
plt.show()

[image: plot 1D 3 MAF]
As you can see from the predicted spectrum, our guess isn’t far from the optimum
hyperparameters. Let’s create a search grid about the guess hyperparameters and run
a cross-validation method for selection.

Statistical learning of the tensors

Smooth LASSO cross-validation

Create a guess range of values for the \(\alpha\) and \(\lambda\)
hyperparameters.
The following code generates a range of \(\lambda\) and \(\alpha\) values
that are uniformly sampled on the log scale.

lambdas = 10 ** (-5.2 - 1 * (np.arange(6) / 5))
alphas = 10 ** (-4 - 2 * (np.arange(6) / 5))

set up cross validation smooth lasso method
s_lasso_cv = SmoothLassoCV(
 alphas=alphas,
 lambdas=lambdas,
 inverse_dimension=inverse_dimension,
 sigma=0.005,
 folds=10,
)
run the fit using the compressed kernel and compressed signal.
s_lasso_cv.fit(compressed_K, compressed_s)

The optimum hyper-parameters

Use the hyperparameters attribute of
the instance for the optimum hyper-parameters, \(\alpha\) and \(\lambda\),
determined from the cross-validation.

print(s_lasso_cv.hyperparameters)

Out:

{'alpha': 6.30957344480193e-06, 'lambda': 1.584893192461114e-06}

The cross-validation surface

Optionally, you may want to visualize the cross-validation error curve/surface. Use
the cross_validation_curve attribute
of the instance, as follows. The cross-validation metric is the mean square error
(MSE).

cv_curve = s_lasso_cv.cross_validation_curve

plot of the cross-validation curve
plt.figure(figsize=(5, 3.5))
ax = plt.subplot(projection="csdm")
ax.contour(np.log10(s_lasso_cv.cross_validation_curve), levels=25)
ax.scatter(
 -np.log10(s_lasso_cv.hyperparameters["alpha"]),
 -np.log10(s_lasso_cv.hyperparameters["lambda"]),
 marker="x",
 color="k",
)
plt.tight_layout(pad=0.5)
plt.show()

[image: plot 1D 3 MAF]

The optimum solution

The f attribute of the instance holds
the solution.

f_sol = s_lasso_cv.f

The corresponding plot of the solution, along with the true tensor distribution, is
shown below.

_, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})

the plot of the tensor distribution solution.
plot2D(ax[0], f_sol / f_sol.max(), title="Optimum distribution")

the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout()
plt.show()

	[image: Optimum distribution, True distribution]

	[image: plot 1D 3 MAF]

	[image: plot 1D 3 MAF]

Total running time of the script: (0 minutes 19.771 seconds)

[image: Launch binder]
 [https://mybinder.org/v2/gh/DeepanshS/mrinversion/master?urlpath=lab/tree/docs/_build/html/../../notebooks/auto_examples/synthetic/plot_1D_3_MAF.ipynb]

Download Python source code: plot_1D_3_MAF.py

Download Jupyter notebook: plot_1D_3_MAF.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

 Page Source

 Bimodal distribution

Note

Click here
to download the full example code or to run this example in your browser via Binder

Bimodal distribution

The following example demonstrates the statistical learning based determination of
the nuclear shielding tensor parameters from a one-dimensional cross-section of a
magic-angle flipping (MAF) spectrum. In this example, we use a synthetic MAF
lineshape from a bimodal tensor distribution.

Before getting started

Import all relevant packages.

import csdmpy as cp
import matplotlib.pyplot as plt
import numpy as np

from mrinversion.kernel.nmr import ShieldingPALineshape
from mrinversion.linear_model import SmoothLasso, SmoothLassoCV, TSVDCompression
from mrinversion.utils import get_polar_grids

Setup for the matplotlib figures

function for 2D x-y plot.
def plot2D(ax, csdm_object, title=""):
 # convert the dimension coordinates of the csdm_object from Hz to pmm.
 _ = [item.to("ppm", "nmr_frequency_ratio") for item in csdm_object.dimensions]

 levels = (np.arange(9) + 1) / 10
 plt.figure(figsize=(4.5, 3.5))
 ax.contourf(csdm_object, cmap="gist_ncar", levels=levels)
 ax.grid(None)
 ax.set_title(title)
 get_polar_grids(ax)
 ax.set_aspect("equal")

Dataset setup

Import the dataset

Load the dataset. Here, we import the dataset as a CSDM data-object.

the 1D MAF cross-section data in csdm format
filename = "https://osu.box.com/shared/static/6kcnou9iwqya30utlmzznnbv25iisxxj.csdf"
data_object = cp.load(filename)

convert the data dimension from `Hz` to `ppm`.
data_object.dimensions[0].to("ppm", "nmr_frequency_ratio")

The variable data_object holds the 1D MAF cross-section. For comparison, let’s
also import the true tensor parameter distribution from which the synthetic 1D pure
anisotropic MAF cross-section line-shape is simulated.

datafile = "https://osu.box.com/shared/static/xesah85nd2gtm9yefazmladi697khuwi.csdf"
true_data_object = cp.load(datafile)

The plot of the 1D MAF cross-section along with the 2D true tensor parameter
distribution of the synthetic dataset is shown below.

the plot of the 1D MAF cross-section dataset.
_, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})
ax[0].plot(data_object)
ax[0].invert_xaxis()

the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout()
plt.show()

	[image: True distribution]

	[image: plot 1D 4 MAF bimodal]

Linear Inversion setup

Dimension setup

Anisotropic-dimension: The dimension of the dataset that holds the pure
anisotropic frequency contributions, which in this case, is the only dimension.

anisotropic_dimension = data_object.dimensions[0]

x-y dimensions: The two inverse dimensions corresponding to the x and
y-axis of the x-y grid.

inverse_dimension = [
 cp.LinearDimension(count=25, increment="370 Hz", label="x"), # the `x`-dimension.
 cp.LinearDimension(count=25, increment="370 Hz", label="y"), # the `y`-dimension.
]

Generating the kernel

For MAF datasets, the line-shape kernel corresponds to the pure nuclear shielding
anisotropy line-shapes. Use the
ShieldingPALineshape class to generate a
shielding line-shape kernel.

lineshape = ShieldingPALineshape(
 anisotropic_dimension=anisotropic_dimension,
 inverse_dimension=inverse_dimension,
 channel="29Si",
 magnetic_flux_density="9.4 T",
 rotor_angle="90 deg",
 rotor_frequency="14 kHz",
)
K = lineshape.kernel(supersampling=1)

Data Compression

Data compression is optional but recommended. It may reduce the size of the
inverse problem and, thus, further computation time.

new_system = TSVDCompression(K, data_object)
compressed_K = new_system.compressed_K
compressed_s = new_system.compressed_s

print(f"truncation_index = {new_system.truncation_index}")

Out:

compression factor = 1.5737704918032787
truncation_index = 61

Solving the inverse problem

Smooth-LASSO problem

Solve the smooth-lasso problem. You may choose to skip this step and proceed to the
statistical learning method. Usually, the statistical learning method is a
time-consuming process that solves the smooth-lasso problem over a range of
predefined hyperparameters.
If you are unsure what range of hyperparameters to use, you can use this step for
a quick look into the possible solution by giving a guess value for the \(\alpha\)
and \(\lambda\) hyperparameters, and then decide on the hyperparameters range
accordingly.

guess alpha and lambda values.
s_lasso = SmoothLasso(alpha=5e-5, lambda1=5e-6, inverse_dimension=inverse_dimension)
s_lasso.fit(K=compressed_K, s=compressed_s)
f_sol = s_lasso.f

Here, f_sol is the solution corresponding to hyperparameters
\(\alpha=5\times10^{-5}\) and \(\lambda=5\times 10^{-6}\). The plot of this
solution is

_, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})

the plot of the guess tensor distribution solution.
plot2D(ax[0], f_sol / f_sol.max(), title="Guess distribution")

the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout()
plt.show()

	[image: Guess distribution, True distribution]

	[image: plot 1D 4 MAF bimodal]

	[image: plot 1D 4 MAF bimodal]

Predicted spectrum

You may also evaluate the predicted spectrum from the above solution following

residuals = s_lasso.residuals(K, data_object)
predicted_spectrum = data_object - residuals

plt.figure(figsize=(4, 3))
plt.subplot(projection="csdm")
plt.plot(data_object, color="black", label="spectrum") # the original spectrum
plt.plot(predicted_spectrum, color="red", label="prediction") # the predicted spectrum
plt.gca().invert_xaxis()
plt.legend()
plt.tight_layout()
plt.show()

[image: plot 1D 4 MAF bimodal]
As you can see from the predicted spectrum, our guess isn’t far from the optimum
hyperparameters. Let’s create a search grid about the guess hyperparameters and run
a cross-validation method for selection.

Statistical learning of the tensors

Smooth LASSO cross-validation

Create a guess range of values for the \(\alpha\) and \(\lambda\)
hyperparameters.
The following code generates a range of \(\lambda\) and \(\alpha\) values
that are uniformly sampled on the log scale.

lambdas = 10 ** (-5.5 - 1 * (np.arange(6) / 5))
alphas = 10 ** (-4 - 2 * (np.arange(6) / 5))

set up cross validation smooth lasso method
s_lasso_cv = SmoothLassoCV(
 alphas=alphas,
 lambdas=lambdas,
 inverse_dimension=inverse_dimension,
 sigma=0.005,
 folds=10,
)
run the fit using the compressed kernel and compressed signal.
s_lasso_cv.fit(compressed_K, compressed_s)

The optimum hyper-parameters

Use the hyperparameters attribute of
the instance for the optimum hyper-parameters, \(\alpha\) and \(\lambda\),
determined from the cross-validation.

print(s_lasso_cv.hyperparameters)

Out:

{'alpha': 6.30957344480193e-06, 'lambda': 1.2589254117941661e-06}

The cross-validation surface

Optionally, you may want to visualize the cross-validation error curve/surface. Use
the cross_validation_curve attribute
of the instance, as follows. The cross-validation metric is the mean square error
(MSE).

cv_curve = s_lasso_cv.cross_validation_curve

plot of the cross-validation curve
plt.figure(figsize=(5, 3.5))
ax = plt.subplot(projection="csdm")
ax.contour(np.log10(s_lasso_cv.cross_validation_curve), levels=25)
ax.scatter(
 -np.log10(s_lasso_cv.hyperparameters["alpha"]),
 -np.log10(s_lasso_cv.hyperparameters["lambda"]),
 marker="x",
 color="k",
)
plt.tight_layout(pad=0.5)
plt.show()

[image: plot 1D 4 MAF bimodal]

The optimum solution

The f attribute of the instance holds
the solution.

f_sol = s_lasso_cv.f

The corresponding plot of the solution, along with the true tensor distribution, is
shown below.

_, ax = plt.subplots(1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})

the plot of the tensor distribution solution.
plot2D(ax[0], f_sol / f_sol.max(), title="Optimum distribution")

the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout()
plt.show()

	[image: Optimum distribution, True distribution]

	[image: plot 1D 4 MAF bimodal]

	[image: plot 1D 4 MAF bimodal]

Total running time of the script: (0 minutes 23.300 seconds)

[image: Launch binder]
 [https://mybinder.org/v2/gh/DeepanshS/mrinversion/master?urlpath=lab/tree/docs/_build/html/../../notebooks/auto_examples/synthetic/plot_1D_4_MAF_bimodal.ipynb]

Download Python source code: plot_1D_4_MAF_bimodal.py

Download Jupyter notebook: plot_1D_4_MAF_bimodal.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

 Page Source

 2D MAT data of KMg0.5O 4.SiO2 glass

Note

Click here
to download the full example code or to run this example in your browser via Binder

2D MAT data of KMg0.5O 4.SiO2 glass

The following example illustrates an application of the statistical learning method
applied in determining the distribution of the nuclear shielding tensor parameters
from a 2D magic-angle turning (MAT) spectrum. In this example, we use the 2D MAT
spectrum 1 of \(\text{KMg}_{0.5}\text{O}\cdot4\text{SiO}_2\) glass.

Setup for the matplotlib figure.

import csdmpy as cp
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
from csdmpy import statistics as stats

from mrinversion.kernel.nmr import ShieldingPALineshape
from mrinversion.kernel.utils import x_y_to_zeta_eta
from mrinversion.linear_model import SmoothLassoCV, TSVDCompression
from mrinversion.utils import plot_3d, to_Haeberlen_grid

Setup for the matplotlib figures.

function for plotting 2D dataset
def plot2D(csdm_object, **kwargs):
 plt.figure(figsize=(4.5, 3.5))
 ax = plt.subplot(projection="csdm")
 ax.imshow(csdm_object, cmap="gist_ncar_r", aspect="auto", **kwargs)
 ax.invert_xaxis()
 ax.invert_yaxis()
 plt.tight_layout()
 plt.show()

Dataset setup

Import the dataset

Load the dataset. Here, we import the dataset as the CSDM data-object.

The 2D MAT dataset in csdm format
filename = "https://zenodo.org/record/3964531/files/KMg0_5-4SiO2-MAT.csdf"
data_object = cp.load(filename)

For inversion, we only interest ourselves with the real part of the complex dataset.
data_object = data_object.real

We will also convert the coordinates of both dimensions from Hz to ppm.
_ = [item.to("ppm", "nmr_frequency_ratio") for item in data_object.dimensions]

Here, the variable data_object is a
CSDM [https://csdmpy.readthedocs.io/en/latest/api/CSDM.html]
object that holds the real part of the 2D MAT dataset. The plot of the MAT dataset
is

plot2D(data_object)

[image: plot 2D KMg0.5O4SiO2]
There are two dimensions in this dataset. The dimension at index 0 is the pure
anisotropic spinning sideband dimension, while the dimension at index 1 is the
isotropic chemical shift dimension.

Prepping the data for inversion

Step-1: Data Alignment

When using the csdm objects with the mrinversion package, the dimension at index
0 must be the dimension undergoing the linear inversion. In this example, we plan to
invert the pure anisotropic shielding line-shape. In the data_object, the
anisotropic dimension is already at index 0 and, therefore, no further action is
required.

Step-2: Optimization

Also notice, the signal from the 2D MAF dataset occupies a small fraction of the
two-dimensional frequency grid. For optimum performance, truncate the dataset to the
relevant region before proceeding. Use the appropriate array indexing/slicing to
select the signal region.

data_object_truncated = data_object[:, 75:105]
plot2D(data_object_truncated)

[image: plot 2D KMg0.5O4SiO2]

Linear Inversion setup

Dimension setup

Anisotropic-dimension:
The dimension of the dataset that holds the pure anisotropic frequency
contributions. In mrinversion, this must always be the dimension at index 0 of
the data object.

anisotropic_dimension = data_object_truncated.dimensions[0]

x-y dimensions:
The two inverse dimensions corresponding to the x and y-axis of the x-y grid.

inverse_dimensions = [
 cp.LinearDimension(count=25, increment="370 Hz", label="x"), # the `x`-dimension.
 cp.LinearDimension(count=25, increment="370 Hz", label="y"), # the `y`-dimension.
]

Generating the kernel

For MAF/PASS datasets, the kernel corresponds to the pure nuclear shielding anisotropy
sideband spectra. Use the
ShieldingPALineshape class to generate a
shielding spinning sidebands kernel.

sidebands = ShieldingPALineshape(
 anisotropic_dimension=anisotropic_dimension,
 inverse_dimension=inverse_dimensions,
 channel="29Si",
 magnetic_flux_density="9.4 T",
 rotor_angle="54.735°",
 rotor_frequency="790 Hz",
 number_of_sidebands=anisotropic_dimension.count,
)

Here, sidebands is an instance of the
ShieldingPALineshape class. The required
arguments of this class are the anisotropic_dimension, inverse_dimension, and
channel. We have already defined the first two arguments in the previous
sub-section. The value of the channel argument is the nucleus observed in the
MAT/PASS experiment. In this example, this value is ‘29Si’.
The remaining arguments, such as the magnetic_flux_density, rotor_angle,
and rotor_frequency, are set to match the conditions under which the 2D MAT/PASS
spectrum was acquired, which in this case corresponds to acquisition at
the magic-angle and spinning at a rotor frequency of 790 Hz in a 9.4 T magnetic
flux density.

The value of the rotor_frequency argument is the effective anisotropic
modulation frequency. In a MAT measurement, the anisotropic modulation frequency
is the same as the physical rotor frequency. For other measurements like the extended
chemical shift modulation sequences (XCS) 2, or its variants, the effective
anisotropic modulation frequency is lower than the physical rotor frequency and
should be set appropriately.

The argument number_of_sidebands is the maximum number of computed
sidebands in the kernel. For most two-dimensional isotropic v.s pure
anisotropic spinning-sideband correlation measurements, the sampling along the
sideband dimension is the rotor or the effective anisotropic modulation
frequency. Therefore, the value of the number_of_sidebands argument is
usually the number of points along the sideband dimension.
In this example, this value is 32.

Once the ShieldingPALineshape instance is created, use the kernel()
method to generate the spinning sideband lineshape kernel.

K = sidebands.kernel(supersampling=2)
print(K.shape)

Out:

(32, 625)

The kernel K is a NumPy array of shape (32, 625), where the axes with 32 and
625 points are the spinning sidebands dimension and the features (x-y coordinates)
corresponding to the \(25\times 25\) x-y grid, respectively.

Data Compression

Data compression is optional but recommended. It may reduce the size of the
inverse problem and, thus, further computation time.

new_system = TSVDCompression(K, data_object_truncated)
compressed_K = new_system.compressed_K
compressed_s = new_system.compressed_s

print(f"truncation_index = {new_system.truncation_index}")

Out:

compression factor = 1.032258064516129
truncation_index = 31

Solving the inverse problem

Smooth LASSO cross-validation

Solve the smooth-lasso problem. Use the statistical learning SmoothLassoCV
method to solve the inverse problem over a range of α and λ values and determine
the best nuclear shielding tensor parameter distribution for the given 2D MAT
dataset. Considering the limited build time for the documentation, we’ll perform
the cross-validation over a smaller \(5 \times 5\) x-y grid. You may
increase the grid resolution for your problem if desired.

setup the pre-defined range of alpha and lambda values
lambdas = 10 ** (-5.4 - 1 * (np.arange(5) / 4))
alphas = 10 ** (-4.5 - 1.5 * (np.arange(5) / 4))

setup the smooth lasso cross-validation class
s_lasso = SmoothLassoCV(
 alphas=alphas, # A numpy array of alpha values.
 lambdas=lambdas, # A numpy array of lambda values.
 sigma=0.00070, # The standard deviation of noise from the MAT dataset.
 folds=10, # The number of folds in n-folds cross-validation.
 inverse_dimension=inverse_dimensions, # previously defined inverse dimensions.
 verbose=1, # If non-zero, prints the progress as the computation proceeds.
 max_iterations=20000, # The maximum number of allowed interations.
)

run fit using the compressed kernel and compressed data.
s_lasso.fit(compressed_K, compressed_s)

Out:

[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 7.4s finished
[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 9.2s finished
[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 11.3s finished
[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 16.5s finished
[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 23.6s finished

The optimum hyper-parameters

Use the hyperparameters attribute of
the instance for the optimum hyper-parameters, \(\alpha\) and \(\lambda\),
determined from the cross-validation.

print(s_lasso.hyperparameters)

Out:

{'alpha': 5.623413251903491e-06, 'lambda': 2.2387211385683376e-06}

The cross-validation surface

Optionally, you may want to visualize the cross-validation error curve/surface. Use
the cross_validation_curve attribute
of the instance, as follows

CV_metric = s_lasso.cross_validation_curve # `CV_metric` is a CSDM object.

plot of the cross validation surface
plt.figure(figsize=(5, 3.5))
ax = plt.subplot(projection="csdm")
ax.contour(np.log10(CV_metric), levels=25)
ax.scatter(
 -np.log10(s_lasso.hyperparameters["alpha"]),
 -np.log10(s_lasso.hyperparameters["lambda"]),
 marker="x",
 color="k",
)
plt.tight_layout(pad=0.5)
plt.show()

[image: plot 2D KMg0.5O4SiO2]

The optimum solution

The f attribute of the instance holds
the solution corresponding to the optimum hyper-parameters,

f_sol = s_lasso.f # f_sol is a CSDM object.

where f_sol is the optimum solution.

The fit residuals

To calculate the residuals between the data and predicted data(fit), use the
residuals() method, as follows,

residuals = s_lasso.residuals(K=K, s=data_object_truncated)
residuals is a CSDM object.

The plot of the residuals.
plot2D(residuals, vmax=data_object_truncated.max(), vmin=data_object_truncated.min())

[image: plot 2D KMg0.5O4SiO2]
The standard deviation of the residuals is

residuals.std()

Out:

<Quantity 0.00116292>

Saving the solution

To serialize the solution to a file, use the save() method of the CSDM object,
for example,

f_sol.save("KMg_mixed_silicate_inverse.csdf") # save the solution
residuals.save("KMg_mixed_silicate_residue.csdf") # save the residuals

Data Visualization

At this point, we have solved the inverse problem and obtained an optimum
distribution of the nuclear shielding tensor parameters from the 2D MAT dataset. You
may use any data visualization and interpretation tool of choice for further
analysis. In the following sections, we provide minimal visualization and analysis
to complete the case study.

Visualizing the 3D solution

Normalize the solution
f_sol /= f_sol.max()

Convert the coordinates of the solution, `f_sol`, from Hz to ppm.
[item.to("ppm", "nmr_frequency_ratio") for item in f_sol.dimensions]

The 3D plot of the solution
plt.figure(figsize=(5, 4.4))
ax = plt.subplot(projection="3d")
plot_3d(ax, f_sol, x_lim=[0, 120], y_lim=[0, 120], z_lim=[-50, -150])
plt.tight_layout()
plt.show()

[image: plot 2D KMg0.5O4SiO2]
From the 3D plot, we observe two distinct regions: one for the \(\text{Q}^4\)
sites and another for the \(\text{Q}^3\) sites.
Select the respective regions by using the appropriate array indexing,

Q4_region = f_sol[0:8, 0:8, 5:25]
Q4_region.description = "Q4 region"

Q3_region = f_sol[0:8, 7:24, 7:25]
Q3_region.description = "Q3 region"

The plot of the respective regions is shown below.

Calculate the normalization factor for the 2D contours and 1D projections from the
original solution, `f_sol`. Use this normalization factor to scale the intensities
from the sub-regions.
max_2d = [
 f_sol.sum(axis=0).max().value,
 f_sol.sum(axis=1).max().value,
 f_sol.sum(axis=2).max().value,
]
max_1d = [
 f_sol.sum(axis=(1, 2)).max().value,
 f_sol.sum(axis=(0, 2)).max().value,
 f_sol.sum(axis=(0, 1)).max().value,
]

plt.figure(figsize=(5, 4.4))
ax = plt.subplot(projection="3d")

plot for the Q4 region
plot_3d(
 ax,
 Q4_region,
 x_lim=[0, 120], # the x-limit
 y_lim=[0, 120], # the y-limit
 z_lim=[-50, -150], # the z-limit
 max_2d=max_2d, # normalization factors for the 2D contours projections
 max_1d=max_1d, # normalization factors for the 1D projections
 cmap=cm.Reds_r, # colormap
 box=True, # draw a box around the region
)
plot for the Q3 region
plot_3d(
 ax,
 Q3_region,
 x_lim=[0, 120], # the x-limit
 y_lim=[0, 120], # the y-limit
 z_lim=[-50, -150], # the z-limit
 max_2d=max_2d, # normalization factors for the 2D contours projections
 max_1d=max_1d, # normalization factors for the 1D projections
 cmap=cm.Blues_r, # colormap
 box=True, # draw a box around the region
)
ax.legend()
plt.tight_layout()
plt.show()

[image: plot 2D KMg0.5O4SiO2]

Visualizing the isotropic projections.

Because the \(\text{Q}^4\) and \(\text{Q}^3\) regions are fully resolved
after the inversion, evaluating the contributions from these regions is trivial.
For examples, the distribution of the isotropic chemical shifts for these regions are

Isotropic chemical shift projection of the 2D MAT dataset.
data_iso = data_object_truncated.sum(axis=0)
data_iso /= data_iso.max() # normalize the projection

Isotropic chemical shift projection of the tensor distribution dataset.
f_sol_iso = f_sol.sum(axis=(0, 1))

Isotropic chemical shift projection of the tensor distribution for the Q4 region.
Q4_region_iso = Q4_region.sum(axis=(0, 1))

Isotropic chemical shift projection of the tensor distribution for the Q3 region.
Q3_region_iso = Q3_region.sum(axis=(0, 1))

Normalize the three projections.
f_sol_iso_max = f_sol_iso.max()
f_sol_iso /= f_sol_iso_max
Q4_region_iso /= f_sol_iso_max
Q3_region_iso /= f_sol_iso_max

The plot of the different projections.
plt.figure(figsize=(5.5, 3.5))
ax = plt.subplot(projection="csdm")
ax.plot(f_sol_iso, "--k", label="tensor")
ax.plot(Q4_region_iso, "r", label="Q4")
ax.plot(Q3_region_iso, "b", label="Q3")
ax.plot(data_iso, "-k", label="MAF")
ax.plot(data_iso - f_sol_iso - 0.1, "gray", label="residuals")
ax.set_title("Isotropic projection")
ax.invert_xaxis()
plt.legend()
plt.tight_layout()
plt.show()

[image: Isotropic projection]
Notice the shape of the isotropic chemical shift distribution for the
\(\text{Q}^4\) sites is skewed, which is expected.

Analysis

For the analysis, we use the
statistics [https://csdmpy.readthedocs.io/en/latest/api/statistics.html]
module of the csdmpy package. Following is the moment analysis of the 3D volumes for
both the \(\text{Q}^4\) and \(\text{Q}^3\) regions up to the second moment.

int_Q4 = stats.integral(Q4_region) # volume of the Q4 distribution
mean_Q4 = stats.mean(Q4_region) # mean of the Q4 distribution
std_Q4 = stats.std(Q4_region) # standard deviation of the Q4 distribution

int_Q3 = stats.integral(Q3_region) # volume of the Q3 distribution
mean_Q3 = stats.mean(Q3_region) # mean of the Q3 distribution
std_Q3 = stats.std(Q3_region) # standard deviation of the Q3 distribution

print("Q4 statistics")
print(f"\tpopulation = {100 * int_Q4 / (int_Q4 + int_Q3)}%")
print("\tmean\n\t\tx:\t{0}\n\t\ty:\t{1}\n\t\tiso:\t{2}".format(*mean_Q4))
print("\tstandard deviation\n\t\tx:\t{0}\n\t\ty:\t{1}\n\t\tiso:\t{2}".format(*std_Q4))

print("Q3 statistics")
print(f"\tpopulation = {100 * int_Q3 / (int_Q4 + int_Q3)}%")
print("\tmean\n\t\tx:\t{0}\n\t\ty:\t{1}\n\t\tiso:\t{2}".format(*mean_Q3))
print("\tstandard deviation\n\t\tx:\t{0}\n\t\ty:\t{1}\n\t\tiso:\t{2}".format(*std_Q3))

Out:

Q4 statistics
 population = 55.526682010553586%
 mean
 x: 8.668624339369668 ppm
 y: 8.895729603986638 ppm
 iso: -107.32386708833955 ppm
 standard deviation
 x: 4.73326212666404 ppm
 y: 4.929006419658588 ppm
 iso: 5.427012270570254 ppm
Q3 statistics
 population = 44.47331798944642%
 mean
 x: 10.133763235406391 ppm
 y: 62.26200849066072 ppm
 iso: -97.01639426409565 ppm
 standard deviation
 x: 4.540084886749352 ppm
 y: 10.65716485254756 ppm
 iso: 4.741866191977004 ppm

The statistics shown above are according to the respective dimensions, that is, the
x, y, and the isotropic chemical shifts. To convert the x and y statistics
to commonly used \(\zeta\) and \(\eta\) statistics, use the
x_y_to_zeta_eta() function.

mean_ζη_Q3 = x_y_to_zeta_eta(*mean_Q3[0:2])

error propagation for calculating the standard deviation
std_ζ = (std_Q3[0] * mean_Q3[0]) ** 2 + (std_Q3[1] * mean_Q3[1]) ** 2
std_ζ /= mean_Q3[0] ** 2 + mean_Q3[1] ** 2
std_ζ = np.sqrt(std_ζ)

std_η = (std_Q3[1] * mean_Q3[0]) ** 2 + (std_Q3[0] * mean_Q3[1]) ** 2
std_η /= (mean_Q3[0] ** 2 + mean_Q3[1] ** 2) ** 2
std_η = (4 / np.pi) * np.sqrt(std_η)

print("Q3 statistics")
print(f"\tpopulation = {100 * int_Q3 / (int_Q4 + int_Q3)}%")
print("\tmean\n\t\tζ:\t{0}\n\t\tη:\t{1}\n\t\tiso:\t{2}".format(*mean_ζη_Q3, mean_Q3[2]))
print(
 "\tstandard deviation\n\t\tζ:\t{0}\n\t\tη:\t{1}\n\t\tiso:\t{2}".format(
 std_ζ, std_η, std_Q3[2]
)
)

Out:

Q3 statistics
 population = 44.47331798944642%
 mean
 ζ: 63.0813035582048 ppm
 η: 0.20543107026990554
 iso: -97.01639426409565 ppm
 standard deviation
 ζ: 10.544005747153385 ppm
 η: 0.09682370563685412
 iso: 4.741866191977004 ppm

Convert the 3D tensor distribution in Haeberlen parameters

You may re-bin the 3D tensor parameter distribution from a
\(\rho(\delta_\text{iso}, x, y)\) distribution to
\(\rho(\delta_\text{iso}, \zeta_\sigma, \eta_\sigma)\) distribution as follows.

Create the zeta and eta dimensions,, as shown below.
zeta = cp.as_dimension(np.arange(40) * 4 - 40, unit="ppm", label="zeta")
eta = cp.as_dimension(np.arange(16) / 15, label="eta")

Use the `to_Haeberlen_grid` function to convert the tensor parameter distribution.
fsol_Hae = to_Haeberlen_grid(f_sol, zeta, eta)

The 3D plot

plt.figure(figsize=(5, 4.4))
ax = plt.subplot(projection="3d")
plot_3d(ax, fsol_Hae, x_lim=[0, 1], y_lim=[-40, 120], z_lim=[-50, -150], alpha=0.4)
plt.tight_layout()
plt.show()

[image: plot 2D KMg0.5O4SiO2]

References

	1

	Walder, B. J., Dey, K. K., Kaseman, D. C., Baltisberger, J. H.,
Grandinetti, P. J. Sideband separation experiments in NMR with phase
incremented echo train acquisition, J. Chem. Phys. 138, 4803142, (2013).
doi:10.1063/1.4803142. [https://doi.org/10.1063/1.4803142]

	2

	Gullion, T., Extended chemical-shift modulation, J. Mag. Res., 85, 3,
(1989).
10.1016/0022-2364(89)90253-9 [https://doi.org/10.1016/0022-2364(89)90253-9]

Total running time of the script: (1 minutes 20.095 seconds)

[image: Launch binder]
 [https://mybinder.org/v2/gh/DeepanshS/mrinversion/master?urlpath=lab/tree/docs/_build/html/../../notebooks/auto_examples/sideband/plot_2D_KMg0.5O4SiO2.ipynb]

Download Python source code: plot_2D_KMg0.5O4SiO2.py

Download Jupyter notebook: plot_2D_KMg0.5O4SiO2.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

 Page Source

 2D MAF data of Rb2O.2.25SiO2 glass

Note

Click here
to download the full example code or to run this example in your browser via Binder

2D MAF data of Rb2O.2.25SiO2 glass

The following example is an application of the statistical learning method in
determining the distribution of the nuclear shielding tensor parameters from a 2D
magic-angle flipping (MAF) spectrum. In this example, we use the 2D MAF spectrum
1 of \(\text{Rb}_2\text{O}\cdot2.25\text{SiO}_2\) glass.

Before getting started

Import all relevant packages.

import csdmpy as cp
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
from csdmpy import statistics as stats

from mrinversion.kernel.nmr import ShieldingPALineshape
from mrinversion.kernel.utils import x_y_to_zeta_eta
from mrinversion.linear_model import SmoothLassoCV, TSVDCompression
from mrinversion.utils import plot_3d, to_Haeberlen_grid

Setup for the matplotlib figures.

function for plotting 2D dataset
def plot2D(csdm_object, **kwargs):
 plt.figure(figsize=(4.5, 3.5))
 ax = plt.subplot(projection="csdm")
 ax.imshow(csdm_object, cmap="gist_ncar_r", aspect="auto", **kwargs)
 ax.invert_xaxis()
 ax.invert_yaxis()
 plt.tight_layout()
 plt.show()

Dataset setup

Import the dataset

Load the dataset. In this example, we import the dataset as the CSDM
data-object.

The 2D MAF dataset in csdm format
filename = "https://zenodo.org/record/3964531/files/Rb2O-2_25SiO2-MAF.csdf"
data_object = cp.load(filename)

For inversion, we only interest ourselves with the real part of the complex dataset.
data_object = data_object.real

We will also convert the coordinates of both dimensions from Hz to ppm.
_ = [item.to("ppm", "nmr_frequency_ratio") for item in data_object.dimensions]

Here, the variable data_object is a
CSDM [https://csdmpy.readthedocs.io/en/latest/api/CSDM.html]
object that holds the real part of the 2D MAF dataset. The plot of the 2D MAF dataset
is

plot2D(data_object)

[image: plot 2D 0 Rb2O2p25SiO2]
There are two dimensions in this dataset. The dimension at index 0, the horizontal
dimension in the figure, is the pure anisotropic dimension, while the dimension at
index 1, the vertical dimension, is the isotropic chemical shift dimension. The
number of coordinates along the respective dimensions is

print(data_object.shape)

Out:

(128, 512)

with 128 points along the anisotropic dimension (index 0) and 512 points along the
isotropic chemical shift dimension (index 1).

Prepping the data for inversion

Step-1: Data Alignment

When using the csdm objects with the mrinversion package, the dimension at index
0 must be the dimension undergoing the linear inversion. In this example, we plan to
invert the pure anisotropic shielding line-shape. Since the anisotropic dimension in
data_object is already at index 0, no further action is required.

Step-2: Optimization

Notice, the signal from the 2D MAF dataset occupies a small fraction of the
two-dimensional frequency grid. Though you may choose to proceed with the inversion
directly onto this dataset, it is not computationally optimum. For optimum
performance, trim the dataset to the region of relevant signals. Use the appropriate
array indexing/slicing to select the signal region.

data_object_truncated = data_object[:, 250:285]
plot2D(data_object_truncated)

[image: plot 2D 0 Rb2O2p25SiO2]
In the above code, we truncate the isotropic chemical shifts, dimension at index 1,
to coordinate between indexes 250 and 285. The isotropic shift coordinates
from the truncated dataset are

print(data_object_truncated.dimensions[1].coordinates)

Out:

[-127.27782256 -125.3275251 -123.37722764 -121.42693019 -119.47663273
 -117.52633527 -115.57603781 -113.62574035 -111.6754429 -109.72514544
 -107.77484798 -105.82455052 -103.87425306 -101.92395561 -99.97365815
 -98.02336069 -96.07306323 -94.12276577 -92.17246832 -90.22217086
 -88.2718734 -86.32157594 -84.37127848 -82.42098103 -80.47068357
 -78.52038611 -76.57008865 -74.6197912 -72.66949374 -70.71919628
 -68.76889882 -66.81860136 -64.86830391 -62.91800645 -60.96770899] ppm

Linear Inversion setup

Dimension setup

In a generic linear-inverse problem, one needs to define two sets of dimensions—the
dimensions undergoing a linear transformation, and the dimensions onto which the
inversion method transforms the data.
In the line-shape inversion, the two sets of dimensions are the anisotropic dimension
and the x-y dimensions.

Anisotropic-dimension:
The dimension of the dataset that holds the pure anisotropic frequency
contributions. In mrinversion, this must always be the dimension at index 0 of
the data object.

anisotropic_dimension = data_object_truncated.dimensions[0]

x-y dimensions:
The two inverse dimensions corresponding to the x and y-axis of the x-y grid.

inverse_dimensions = [
 cp.LinearDimension(count=25, increment="400 Hz", label="x"), # the `x`-dimension.
 cp.LinearDimension(count=25, increment="400 Hz", label="y"), # the `y`-dimension.
]

Generating the kernel

For MAF datasets, the line-shape kernel corresponds to the pure nuclear shielding
anisotropy line-shapes. Use the
ShieldingPALineshape class to generate a
shielding line-shape kernel.

lineshape = ShieldingPALineshape(
 anisotropic_dimension=anisotropic_dimension,
 inverse_dimension=inverse_dimensions,
 channel="29Si",
 magnetic_flux_density="9.4 T",
 rotor_angle="90°",
 rotor_frequency="13 kHz",
 number_of_sidebands=4,
)

Here, lineshape is an instance of the
ShieldingPALineshape class. The required
arguments of this class are the anisotropic_dimension, inverse_dimension, and
channel. We have already defined the first two arguments in the previous
sub-section. The value of the channel argument is the nucleus observed in the MAF
experiment. In this example, this value is ‘29Si’.
The remaining arguments, such as the magnetic_flux_density, rotor_angle,
and rotor_frequency, are set to match the conditions under which the 2D MAF
spectrum was acquired. Note for the MAF measurements the rotor angle is usually
\(90^\circ\) for the anisotropic dimension. The value of the
number_of_sidebands argument is the number of sidebands calculated for each
line-shape within the kernel. Unless, you have a lot of spinning sidebands in your
MAF dataset, the value of this argument is generally low. Here, we calculate four
spinning sidebands per line-shape within in the kernel.

Once the ShieldingPALineshape instance is created, use the
kernel() method of the
instance to generate the MAF line-shape kernel.

K = lineshape.kernel(supersampling=1)
print(K.shape)

Out:

(128, 625)

The kernel K is a NumPy array of shape (128, 625), where the axes with 128 and
625 points are the anisotropic dimension and the features (x-y coordinates)
corresponding to the \(25\times 25\) x-y grid, respectively.

Data Compression

Data compression is optional but recommended. It may reduce the size of the
inverse problem and, thus, further computation time.

new_system = TSVDCompression(K, data_object_truncated)
compressed_K = new_system.compressed_K
compressed_s = new_system.compressed_s

print(f"truncation_index = {new_system.truncation_index}")

Out:

compression factor = 1.471264367816092
truncation_index = 87

Solving the inverse problem

Smooth LASSO cross-validation

Solve the smooth-lasso problem. Use the statistical learning SmoothLassoCV
method to solve the inverse problem over a range of α and λ values and determine
the best nuclear shielding tensor parameter distribution for the given 2D MAF
dataset. Considering the limited build time for the documentation, we’ll perform
the cross-validation over a smaller \(5 \times 5\) x-y grid. You may
increase the grid resolution for your problem if desired.

setup the pre-defined range of alpha and lambda values
lambdas = 10 ** (-5.2 - 1.25 * (np.arange(5) / 4))
alphas = 10 ** (-5.5 - 1.25 * (np.arange(5) / 4))

setup the smooth lasso cross-validation class
s_lasso = SmoothLassoCV(
 alphas=alphas, # A numpy array of alpha values.
 lambdas=lambdas, # A numpy array of lambda values.
 sigma=0.0045, # The standard deviation of noise from the 2D MAF data.
 folds=10, # The number of folds in n-folds cross-validation.
 inverse_dimension=inverse_dimensions, # previously defined inverse dimensions.
 verbose=1, # If non-zero, prints the progress as the computation proceeds.
)

run the fit method on the compressed kernel and compressed data.
s_lasso.fit(K=compressed_K, s=compressed_s)

Out:

[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 6.8s finished
[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 7.3s finished
[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 8.2s finished
[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 9.6s finished
[Parallel(n_jobs=-1)]: Using backend ThreadingBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 5 out of 5 | elapsed: 11.7s finished

The optimum hyper-parameters

Use the hyperparameters attribute of
the instance for the optimum hyper-parameters, \(\alpha\) and \(\lambda\),
determined from the cross-validation.

print(s_lasso.hyperparameters)

Out:

{'alpha': 7.498942093324558e-07, 'lambda': 3.0725573652674454e-06}

The cross-validation surface

Optionally, you may want to visualize the cross-validation error curve/surface. Use
the cross_validation_curve attribute
of the instance, as follows

CV_metric = s_lasso.cross_validation_curve # `CV_metric` is a CSDM object.

plot of the cross validation surface
plt.figure(figsize=(5, 3.5))
ax = plt.subplot(projection="csdm")
ax.contour(np.log10(CV_metric), levels=25)
ax.scatter(
 -np.log10(s_lasso.hyperparameters["alpha"]),
 -np.log10(s_lasso.hyperparameters["lambda"]),
 marker="x",
 color="k",
)
plt.tight_layout(pad=0.5)
plt.show()

[image: plot 2D 0 Rb2O2p25SiO2]

The optimum solution

The f attribute of the instance holds
the solution corresponding to the optimum hyper-parameters,

f_sol = s_lasso.f # f_sol is a CSDM object.

where f_sol is the optimum solution.

The fit residuals

To calculate the residuals between the data and predicted data(fit), use the
residuals() method, as follows,

residuals = s_lasso.residuals(K=K, s=data_object_truncated)
residuals is a CSDM object.

The plot of the residuals.
plot2D(residuals, vmax=data_object_truncated.max(), vmin=data_object_truncated.min())

[image: plot 2D 0 Rb2O2p25SiO2]
The standard deviation of the residuals is close to the standard deviation of the
noise, \(\sigma = 0.0043\).

residuals.std()

Out:

<Quantity 0.00475719>

Saving the solution

To serialize the solution (nuclear shielding tensor parameter distribution) to a
file, use the save() method of the CSDM object, for example,

f_sol.save("Rb2O.2.25SiO2_inverse.csdf") # save the solution
residuals.save("Rb2O.2.25SiO2_residue.csdf") # save the residuals

Data Visualization

At this point, we have solved the inverse problem and obtained an optimum
distribution of the nuclear shielding tensor parameters from the 2D MAF dataset. You
may use any data visualization and interpretation tool of choice for further
analysis. In the following sections, we provide minimal visualization and analysis
to complete the case study.

Visualizing the 3D solution

Normalize the solution
f_sol /= f_sol.max()

Convert the coordinates of the solution, `f_sol`, from Hz to ppm.
[item.to("ppm", "nmr_frequency_ratio") for item in f_sol.dimensions]

The 3D plot of the solution
plt.figure(figsize=(5, 4.4))
ax = plt.subplot(projection="3d")
plot_3d(ax, f_sol, x_lim=[0, 150], y_lim=[0, 150], z_lim=[-50, -150])
plt.tight_layout()
plt.show()

[image: plot 2D 0 Rb2O2p25SiO2]
From the 3D plot, we observe two distinct regions: one for the \(\text{Q}^4\)
sites and another for the \(\text{Q}^3\) sites.
Select the respective regions by using the appropriate array indexing,

Q4_region = f_sol[0:7, 0:7, 4:25]
Q4_region.description = "Q4 region"

Q3_region = f_sol[0:8, 10:24, 11:30]
Q3_region.description = "Q3 region"

The plot of the respective regions is shown below.

Calculate the normalization factor for the 2D contours and 1D projections from the
original solution, `f_sol`. Use this normalization factor to scale the intensities
from the sub-regions.
max_2d = [
 f_sol.sum(axis=0).max().value,
 f_sol.sum(axis=1).max().value,
 f_sol.sum(axis=2).max().value,
]
max_1d = [
 f_sol.sum(axis=(1, 2)).max().value,
 f_sol.sum(axis=(0, 2)).max().value,
 f_sol.sum(axis=(0, 1)).max().value,
]

plt.figure(figsize=(5, 4.4))
ax = plt.subplot(projection="3d")

plot for the Q4 region
plot_3d(
 ax,
 Q4_region,
 x_lim=[0, 150], # the x-limit
 y_lim=[0, 150], # the y-limit
 z_lim=[-50, -150], # the z-limit
 max_2d=max_2d, # normalization factors for the 2D contours projections
 max_1d=max_1d, # normalization factors for the 1D projections
 cmap=cm.Reds_r, # colormap
 box=True, # draw a box around the region
)
plot for the Q3 region
plot_3d(
 ax,
 Q3_region,
 x_lim=[0, 150], # the x-limit
 y_lim=[0, 150], # the y-limit
 z_lim=[-50, -150], # the z-limit
 max_2d=max_2d, # normalization factors for the 2D contours projections
 max_1d=max_1d, # normalization factors for the 1D projections
 cmap=cm.Blues_r, # colormap
 box=True, # draw a box around the region
)
ax.legend()
plt.tight_layout()
plt.show()

[image: plot 2D 0 Rb2O2p25SiO2]

Visualizing the isotropic projections.

Because the \(\text{Q}^4\) and \(\text{Q}^3\) regions are fully resolved
after the inversion, evaluating the contributions from these regions is trivial.
For examples, the distribution of the isotropic chemical shifts for these regions are

Isotropic chemical shift projection of the 2D MAF dataset.
data_iso = data_object_truncated.sum(axis=0)
data_iso /= data_iso.max() # normalize the projection

Isotropic chemical shift projection of the tensor distribution dataset.
f_sol_iso = f_sol.sum(axis=(0, 1))

Isotropic chemical shift projection of the tensor distribution for the Q4 region.
Q4_region_iso = Q4_region.sum(axis=(0, 1))

Isotropic chemical shift projection of the tensor distribution for the Q3 region.
Q3_region_iso = Q3_region.sum(axis=(0, 1))

Normalize the three projections.
f_sol_iso_max = f_sol_iso.max()
f_sol_iso /= f_sol_iso_max
Q4_region_iso /= f_sol_iso_max
Q3_region_iso /= f_sol_iso_max

The plot of the different projections.
plt.figure(figsize=(5.5, 3.5))
ax = plt.subplot(projection="csdm")
ax.plot(f_sol_iso, "--k", label="tensor")
ax.plot(Q4_region_iso, "r", label="Q4")
ax.plot(Q3_region_iso, "b", label="Q3")
ax.plot(data_iso, "-k", label="MAF")
ax.plot(data_iso - f_sol_iso - 0.1, "gray", label="residuals")
ax.set_title("Isotropic projection")
ax.invert_xaxis()
plt.legend()
plt.tight_layout()
plt.show()

[image: Isotropic projection]

Analysis

For the analysis, we use the
statistics [https://csdmpy.readthedocs.io/en/latest/api/statistics.html]
module of the csdmpy package. Following is the moment analysis of the 3D volumes for
both the \(\text{Q}^4\) and \(\text{Q}^3\) regions up to the second moment.

int_Q4 = stats.integral(Q4_region) # volume of the Q4 distribution
mean_Q4 = stats.mean(Q4_region) # mean of the Q4 distribution
std_Q4 = stats.std(Q4_region) # standard deviation of the Q4 distribution

int_Q3 = stats.integral(Q3_region) # volume of the Q3 distribution
mean_Q3 = stats.mean(Q3_region) # mean of the Q3 distribution
std_Q3 = stats.std(Q3_region) # standard deviation of the Q3 distribution

print("Q4 statistics")
print(f"\tpopulation = {100 * int_Q4 / (int_Q4 + int_Q3)}%")
print("\tmean\n\t\tx:\t{0}\n\t\ty:\t{1}\n\t\tiso:\t{2}".format(*mean_Q4))
print("\tstandard deviation\n\t\tx:\t{0}\n\t\ty:\t{1}\n\t\tiso:\t{2}".format(*std_Q4))

print("Q3 statistics")
print(f"\tpopulation = {100 * int_Q3 / (int_Q4 + int_Q3)}%")
print("\tmean\n\t\tx:\t{0}\n\t\ty:\t{1}\n\t\tiso:\t{2}".format(*mean_Q3))
print("\tstandard deviation\n\t\tx:\t{0}\n\t\ty:\t{1}\n\t\tiso:\t{2}".format(*std_Q3))

Out:

Q4 statistics
 population = 11.890539677377667%
 mean
 x: 8.278439388848904 ppm
 y: 8.720854288316803 ppm
 iso: -98.05908068021311 ppm
 standard deviation
 x: 4.367435149315327 ppm
 y: 4.694619674817486 ppm
 iso: 5.396280313955067 ppm
Q3 statistics
 population = 88.10946032262234%
 mean
 x: 10.130212774789943 ppm
 y: 79.93509495728581 ppm
 iso: -88.92549894517143 ppm
 standard deviation
 x: 6.6364608363215 ppm
 y: 8.121016875697714 ppm
 iso: 4.40509781257238 ppm

The statistics shown above are according to the respective dimensions, that is, the
x, y, and the isotropic chemical shifts. To convert the x and y statistics
to commonly used \(\zeta_\sigma\) and \(\eta_\sigma\) statistics, use the
x_y_to_zeta_eta() function.

mean_ζη_Q3 = x_y_to_zeta_eta(*mean_Q3[0:2])

error propagation for calculating the standard deviation
std_ζ = (std_Q3[0] * mean_Q3[0]) ** 2 + (std_Q3[1] * mean_Q3[1]) ** 2
std_ζ /= mean_Q3[0] ** 2 + mean_Q3[1] ** 2
std_ζ = np.sqrt(std_ζ)

std_η = (std_Q3[1] * mean_Q3[0]) ** 2 + (std_Q3[0] * mean_Q3[1]) ** 2
std_η /= (mean_Q3[0] ** 2 + mean_Q3[1] ** 2) ** 2
std_η = (4 / np.pi) * np.sqrt(std_η)

print("Q3 statistics")
print(f"\tpopulation = {100 * int_Q3 / (int_Q4 + int_Q3)}%")
print("\tmean\n\t\tζ:\t{0}\n\t\tη:\t{1}\n\t\tiso:\t{2}".format(*mean_ζη_Q3, mean_Q3[2]))
print(
 "\tstandard deviation\n\t\tζ:\t{0}\n\t\tη:\t{1}\n\t\tiso:\t{2}".format(
 std_ζ, std_η, std_Q3[2]
)
)

Out:

Q3 statistics
 population = 88.10946032262234%
 mean
 ζ: 80.57444146063203 ppm
 η: 0.16050264820969595
 iso: -88.92549894517143 ppm
 standard deviation
 ζ: 8.099667652306346 ppm
 η: 0.10528101479643995
 iso: 4.40509781257238 ppm

Result cross-verification

The reported value for the Qn-species distribution from Baltisberger et. al. 1
is listed below and is consistent with the above result.

	Species

	Yield

	Isotropic chemical shift, \(\delta_\text{iso}\)

	Shielding anisotropy, \(\zeta_\sigma\):

	Shielding asymmetry, \(\eta_\sigma\):

	Q4

	\(11.0 \pm 0.3\) %

	\(-98.0 \pm 5.64\) ppm

	0 ppm (fixed)

	0 (fixed)

	Q3

	\(89 \pm 0.1\) %

	\(-89.5 \pm 4.65\) ppm

	80.7 ppm with a 6.7 ppm Gaussian broadening

	0 (fixed)

Convert the 3D tensor distribution in Haeberlen parameters

You may re-bin the 3D tensor parameter distribution from a
\(\rho(\delta_\text{iso}, x, y)\) distribution to
\(\rho(\delta_\text{iso}, \zeta_\sigma, \eta_\sigma)\) distribution as follows.

Create the zeta and eta dimensions,, as shown below.
zeta = cp.as_dimension(np.arange(40) * 4 - 40, unit="ppm", label="zeta")
eta = cp.as_dimension(np.arange(16) / 15, label="eta")

Use the `to_Haeberlen_grid` function to convert the tensor parameter distribution.
fsol_Hae = to_Haeberlen_grid(f_sol, zeta, eta)

The 3D plot

plt.figure(figsize=(5, 4.4))
ax = plt.subplot(projection="3d")
plot_3d(ax, fsol_Hae, x_lim=[0, 1], y_lim=[-40, 120], z_lim=[-50, -150], alpha=0.4)
plt.tight_layout()
plt.show()

[image: plot 2D 0 Rb2O2p25SiO2]

References

	1(1,2)

	Baltisberger, J. H., Florian, P., Keeler, E. G., Phyo, P. A., Sanders, K. J.,
Grandinetti, P. J.. Modifier cation effects on 29Si nuclear shielding
anisotropies in silicate glasses, J. Magn. Reson. 268 (2016) 95 – 106.
doi:10.1016/j.jmr.2016.05.003 [https://doi.org/10.1016/j.jmr.2016.05.003].

Total running time of the script: (0 minutes 52.367 seconds)

[image: Launch binder]
 [https://mybinder.org/v2/gh/DeepanshS/mrinversion/master?urlpath=lab/tree/docs/_build/html/../../notebooks/auto_examples/MAF/plot_2D_0_Rb2O2p25SiO2.ipynb]

Download Python source code: plot_2D_0_Rb2O2p25SiO2.py

Download Jupyter notebook: plot_2D_0_Rb2O2p25SiO2.ipynb

Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]

 Page Source

 2D MAF data of Na2O.4.7SiO2 glass

Note

Click here
to download the full example code or to run this example in your browser via Binder

2D MAF data of Na2O.4.7SiO2 glass

The following example illustrates an application of the statistical learning method
applied in determining the distribution of the nuclear shielding tensor parameters
from a 2D magic-angle flipping (MAF) spectrum. In this example, we use the 2D MAF
spectrum 1 of \(\text{Na}_2\text{O}\cdot4.7\text{SiO}_2\) glass.

Befor