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About

The mrinversion python package is based on the statistical learning technique for determining the underlying distribution of
the magnetic resonance (NMR) parameters.

The library utilizes the mrsimulator package for generating solid-state NMR spectra and scikit-learn package for statistical learn-
ing.

Features
The mrinversion package includes

e Spectral Inversion: Two-dimensional solid-state NMR spectrum of dilute spin-systems correlating the isotropic to
anisotropic frequencies to a three-dimensional distribution of tensor parameters. Presently, we support the inversion of

— Magic angle turning (MAT), Phase adjusted spinning sidebands (PASS), and similar spectra correlating the
isotropic chemical shift resonances to pure anisotropic spinning sideband resonances into a three-dimensional distri-
bution of nuclear shielding tensor parameters, p(diso, (s, 7o ), Where Jiso is the isotropic chemical shift, and ¢, and
7, are the shielding anisotropy and asymmetry parameters, respectively, defined using the Haeberlen convention.

— Magic angle flipping (MAF) spectra correlating the isotropic chemical shift resonances to pure anisotropic reso-
nances into a three-dimensional distribution of nuclear shielding tensor parameters, p(diso, (o, 7o ), Where i is the
isotropic chemical shift, and (,, and 7,,, are the shielding anisotropy and asymmetry parameters, respectively, defined
using the Haeberlen convention.

e Relaxometry Inversion: Inversion of NMR relaxometry measurements to the distribution of relaxation parameters (T1,
T2).

INSTALLATION 1
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2 INSTALLATION



CHAPTER
ONE

GETTING STARTED

1.1 Installation

1.1.1 Requirements

mrinversion has the following strict requirements:
e Python 3.8 or later
e Numpy 1.20 or later
See Package dependencies (page 4) for a full list of requirements.

Make sure you have the required version of python by typing the following in the terminal,

Tip: You may also click the copy-button located at the top-right corner of the code cell area in the HTML docs, to copy the
code lines without the prompts and then paste it as usual. Thanks to Sphinx-copybutton)

$ python —--version

For Mac users, python version 3 may be installed under the name python3. You may replace python for python3 in the above
command and all subsequent python statements.

1.1.2 Installing mrinversion

Google Colab Notebook

Colaboratory is a Google research project. It is a Jupyter notebook environment that runs entirely in the cloud. Launch a new
notebook on Colab. To install the mrinversion package, type

'pip install mrinversion

in the first cell, and execute. All done! You may now proceed to the next section and start using the library.



https://www.python.org
https://numpy.org
https://sphinx-copybutton.readthedocs.io/en/latest/
http://colab.research.google.com
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Local machine (Using pip)

The mrinversion package utilizes the mrsimulator package for generating the NMR line-shapes.

To install mrinversion, type the following in the terminal.

$ pip install mrinversion

If yougetaPermissionError, it usually means that you do not have the required administrative access to install new packages
to your Python installation. In this case, you may consider adding the ——usexr option, at the end of the statement, to install the
package into your home directory. You can read more about how to do this in the pip documentation.

$ pip install mrinversion --user

Upgrading to a hewer version

To upgrade, type the following in the terminal/Prompt,

$ pip install mrinversion -U

1.2 Package dependencies

The mrinversion library depends on the following packages:

Required packages
e numpy>=1.17
o csdmpy>=0.5
e mrsimulator>=0.6 (for generating the NMR line-shape)
e scikit-learn>=0.22.1 (for statistical leaning methods)
Other packages
e pytest>=4.5.0 for unit tests.

e pre-commit for code formatting

sphinx>=2.0 for generating the documentation

sphinxjp.themes.basicstrap for documentation.

sphinx-copybutton

Chapter 1. Getting Started
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CHAPTER
TWO

USER DOCUMENTATION

2.1 Introduction

2.1.1 Objective

The mrinversion package solves the linear inverse problems involving Fredholm integrals of the first kind, which are often
encounted in magnetic resonance. The package currently supports inversion of

e pure shielding anisotropic NMR lineshape into a distribution of the second-rank traceless symmetric shielding tensor prin-
cipal components, and

e NMR relaxometry measurement into a distribution of relaxation parameters.
Pure shielding anisotropic lineshape inversion

In the case NMR lineshape inversion, the pure anisotropic frequency spectra corresponds to the cross-sections of the 2D isotropic
v.s. anisotropic correlation spectrum, such as the 2D One Pulse (TOP) MAS, phase adjusted spinning sidebands (PASS), magic-
angle turning (MAT), extended chemical shift modulation (XCS), magic-angle hopping (MAH), magic-angle flipping (MAF),
and Variable Angle Correlation Spectroscopy (VACSY). A key feature of all these 2D isotropic/anisotropic correlation spectra—
—either as acquired or after a shear transformation—is that the anisotropic cross-section can be modeled as a linear combination
of subspectra,

$(v16ic) = | KRS RI5)R 2.1)

where s(1/|di50) is the observed anisotropic cross-section at a given isotropic shift, dis, K (v, R) represents a simulated subspectrum
of a nuclear spin system with a given set of parameters, R, and f(R|dis ) is the probability of the respective set of parameters. In
Eq. (2.1), R represents the anisotropic and asymmetry parameters of the shielding tensor.

Relaxometry inversion

For inversion of relaxometry measurements, the signal growth or decay from spin relaxation is modeled as,
stely) = [ K R) SRR, (2.2)
R

where s(t, v/) is the observed signal relaxation at a given frequency cross-section, v, (¢, R) is a simulated kernel of spin relaxation
with a given set of parameters, R, and f(R|v) is the probability of the respective set of parameters. In Eq. (2.2), R represents
the relaxation parameters—17, T5.

Note, both Eq. (2.1), and Eq. (2.2) are Fredholm integrals of the first kind.
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2.1.2 Generic Linear problem

Linear inverse problems on Fredholm integral of the first kind are frequently encountered in the scientific community and have
the following generic form

s=K-f, (2.3)

where K € R"*" is the transforming kernel (matrix), f € R™ is the unknown and desired solution, and s € R™ is the known
signal, which includes the measurement noise. When the matrix K is non-singular and m = n, the solution to the problem in Eq.
(2.3) has a simple closed-form solution,

f=K'.s. (2.4)

The deciding factor whether the solution f exists in Eq. (2.4) is whether or not the kernel K is invertible. Often, most scientific
problems with practical applications suffer from singular, near-singular, or ill-conditioned kernels, where K—! doesn’t exist. Such
types of problems are termed as ill-posed. The inversion of a purely anisotropic NMR spectrum to the distribution of the tensorial
parameters is one such ill-posed problem.

Regularized linear problem

A common approach in solving ill-posed problems is to employ the regularization methods of form

1 = argmin (||K £ —s|2+ g(f)) ) (2.5)
>0

where ||z||2 is the /-2 norm of z, g(f) is the regularization term, and fT is the regularized solution. The choice of the regularization
term, g(f), is often based on prior knowledge of the system for which the linear problem is defined. For anisotropic NMR spectrum
inversion, we choose the smooth-LASSO regularization.

I1 regularization

The 11 regularized linear model minimizes the objective function,
K- £ = s[|3 + AlIf]]1, (2.6)

where A is the regularization hyperparameter controlling the sparsity of the solution f.

Smooth-LASSO regularization

Our prior assumption for the distribution of the tensor parameters is that it should be smooth and continuous for disordered and
sparse and discrete for crystalline materials. Therefore, we employ the smooth-lasso method, which is a linear model that is
trained with the combined 11 and 12 priors as the regularizer. The method minimizes the objective function,

d
K- £ —=sll5+ a3 5+ Al (2.7)
i=1

where « and ) are the hyperparameters controlling the smoothness and sparsity of the solution f. The matrix J; typically reflects
some underlying geometry or the structure in the true solution. Here, J; is defined to promote smoothness along the i dimension
of the solution f and is given as

Ji:In1®"'®Am®"'®Inda (2.8)
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where I,,, € R™*™ is the identity matrix, and A,,, is the first difference matrix given as

1 -1 0
S S 1
o --- 0 1 -1
The symbol ® is the Kronecker product. The terms, (n1,no, - - - ,ng), are the number of points along the respective dimensions,

with the constraint that H?Zl n; = n, where d is the total number of dimensions in the solution f, and n is the total number of
features in the kernel, K.

2.1.3 Understanding the x-y plot

A second-rank symmetric tensor, S, in a three-dimensional space, is described by three principal components, 5,4, Sy, and s,
in the principal axis system (PAS). Often, depending on the context of the problem, the three principal components are expressed
with three new parameters following a convention. One such convention is the Haeberlen convention, which defines 6o, ¢, and 7,
as the isotropic shift, anisotropy, and asymmetry parameters, respectively. Here, the parameters ¢ and 7 contribute to the purely
anisotropic frequencies, and determining the distribution of these two parameters is the focus of this library.

Defining the inverse grid

When solving any linear inverse problem, one needs to define an inverse grid before solving the problem. A familiar example is
the inverse Fourier transform, where the inverse grid is defined following the Nyquist—Shannon sampling theorem. Unlike inverse
Fourier transform, however, there is no well-defined sampling grid for the second-rank traceless symmetric tensor parameters.
One obvious choice is to define a two-dimensional (-7 Cartesian grid.

As far as the inversion problem is concerned, ¢ and 7 are just labels for the subspectra. In simplistic terms, the inversion problem
solves for the probability of each subspectrum, from a given pre-defined basis of subspectra, that describes the observed spectrum.
If the subspectra basis is defined over a (-7 Cartesian grid, multiple ({, ) coordinates points to the same subspectra. For example,
the subspectra from coordinates (¢, = 1) and (—(,n = 1) are identical, therefore, distinguishing these coordinates from the
subspectra becomes impossible.

The issue of multiple coordinates pointing to the same object is not new. It is a common problem when representing polar
coordinates in the Cartesian basis. Try describing the coordinates of the south pole using latitudes and longitudes. You can define
the latitude, but describing longitude becomes problematic. A similar situation arises in the context of second-rank traceless
tensor parameters when the anisotropy goes to zero. You can specify the anisotropy as zero, but defining asymmetry becomes
problematic.

Introducing the z-y grid

A simple fix to this issue is to define the (¢, 7n) coordinates in a polar basis. We, therefore, introduce a piece-wise polar grid
representation of the second-rank traceless tensor parameters, (-7, defined as

r¢=1¢ and 0= { (2.10)

ERSE

n :¢ <0,
(lfg) :¢>0.

Because Cartesian grids are more manageable in computation, we re-express the above polar piece-wise grid as the x-y Cartesian
grid following,

x=rccosf and y=rcsinb. (2.11)

2.1. Introduction 7
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In the x-y grid system, the basis subspectra are relatively distinguishable. The mrinversion library provides a utility function
to render the piece-wise polar grid for your matplotlib figures. Copy-paste the following code in your script.

>>> import matplotlib.pyplot as plt
>>> from mrinversion.utils import get_polar_grids

>>> plt.figure(figsize=(4, 3.5))
>>> ax=plt.gcal()

>>> # add your plots/contours here.
>>> get_polar_grids (ax)

>>> ax.set_xlabel('x / ppm')

>>> ax.set_ylabel('y / ppm')

>>> plt.tight_layout ()

>>> plt.show()

1.0

0.8 4=l

061

y /ppm

044

0.6 0.8 1.0
X/ ppm

Figure 2.1: The figure depicts the piece-wise polar (-n grid represented on an x-y grid. The radial and angular
grid lines represent the magnitude of ¢ and 7, respectively. The blue and red shading represents the positive and
negative values of (, respectively. The radian grid lines are drawn at every 0.2 ppm increments of {, and the angular
grid lines are drawn at every 0.2 increments of 7. The x and y-axis are n = 0, and the diagonal z =y is n = 1.

If you are familiar with the matplotlib library, you may notice that most code lines are the basic matplotlib statements, except for
the line that says get_polar_grids(ax). The get_polar grids () (page 219) is a utility function that generates the piece-wise
polar grid for your figures.

Here, the shielding anisotropy parameter, ¢, is the radial dimension, and the asymmetry parameter, 7, is the angular dimension,
defined using Egs. (2.10) and (2.11). The region in blue and red corresponds to the positive and negative values of ¢, where the
magnitude of the anisotropy increases radially. The x and the y-axis are 7 = 0 for the negative and positive ¢, respectively. When
moving towards the diagonal from x or y-axes, the asymmetry parameter, 1, uniformly increase, where the diagonal is n = 1.

8 Chapter 2. User Documentation
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2.2 Before getting started

The following is a list of some requirements and recommendations to help prepare the 2D dataset for inversion.

2.2.1 Common recommendations/requirements

Dataset shear

The inversion method assumes that the 2D dataset is sheared, such that one of the dimensions corresponds to a pure
anisotropic spectrum. The anisotropic cross-sections are centered at O Hz.

Required: Apply a shear transformation before proceeding.

Calculate the noise standard deviation
Use the noise region of your spectrum to calculate the standard deviation of the noise. You will require this value when
implementing cross-validation.

2.2.2 Spinning Sideband correlation dataset specific recommendations

Data-repeat operation

A data-repeat operation on the time-domain signal corresponding to the sideband dimension makes the spinning sidebands
look like a stick spectrum after a Fourier transformation, a visual, which most NMR spectroscopists are familiar from the
1D magic-angle spinning spectrum. Like a zero-fill operation, a spinning sideband data-repeat operation is purely cosmetic
and adds no information. In terms of computation, however, a data-repeated spinning-sideband spectrum will take longer
to solve.

Strongly recommended: Avoid data-repeat operation.

2.2.3 Magic angle flipping dataset specific recommendations

Isotropic shift correction along the anisotropic dimension

Ordinarily, after shear, a MAF spectrum is a 2D isotropic v.s. pure anisotropic frequency correlation spectrum. In certain
conditions, this is not true. In a MAF experiment, the sample holder (rotor) physically swaps between two angles (90° <>
54.735°). It is possible to have a slightly different external magnetic fields at the two angles, in which case, there is an
isotropic component along the anisotropic dimension, which is not removed by the shear transformation.

Required: Correct for the isotropic offset along the anisotropic dimension by adding an appropriate coordinates-offset.

Zero-fill operation

Zero filling the time domain dataset is purely cosmetic. It makes the spectrum look visually appealing, but adds no infor-
mation, that is, a zero-filled dataset contains the same information as a non-zero filled dataset. In terms of computation,
however, a zero-filled spectrum will take longer to solve.

Recommendation: If zero-filled, try to keep the total number of points along the anisotropic dimension in the range of
120 - 150 points.

2.2. Before getting started 9
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2.3 Getting started with spectral inversion

We have put together a set of guidelines for using the mrinversion package. We encourage our users to follow these guidelines for
consistency.

Let’s examine the inversion of a purely anisotropic MAS sideband spectrum into a 2D distribution of nuclear shielding anisotropy
parameters. For illustrative purposes, we use a synthetic one-dimensional purely anisotropic spectrum. Think of this as a cross-
section of your 2D MAT/PASS dataset.

Import relevant modules

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> from matplotlib import rcParams

>>> from mrinversion.utils import get_polar_grids

>>> rcParams|['pdf.fonttype']l = 42 # for exporting figures as illustrator editable pdf.

>>> # a function to plot the 2D tensor parameter distribution
>>> def plot2D(ax, csdm_object, title='"):
# convert the dimension from “Hz' to “ppm .
_ = [item.to('ppm', 'nmr_frequency_ratio') for item in csdm_object.dimensions]

levels = (np.arange(9)+1)/10

ax.contourf (csdm_object, cmap='gist_ncar', levels=levels)
ax.grid (None)

ax.set_title(title)

ax.set_aspect ("equal")

# The get_polar_grids method place a polar zeta-eta grid on the background.
get_polar_grids (ax)

2.3.1 Import the dataset

The first step is getting the sideband spectrum. In this example, we get the data from a CSDM' compliant file-format. Import
the csdmpy module and load the dataset as follows,

Note: The CSDM file-format is a new open-source universal file format for multi-dimensional datasets. It is supported by NMR
programs such as SIMPSON?, DMFIT?, and RMN*. A python package supporting CSDM file-format, csdmpy, is also available.

>>> import csdmpy as cp

>>> filename = "https://ssnmr.org/resources/mrinversion/xnlhecn8ifzcwx09£83gsh27rhc51516.
—csdf"
>>> data_object = cp.load(filename) # load the CSDM file with the csdmpy module

L Srivastava, D. J., Vosegaard, T., Massiot, D., Grandinetti, P. J., Core Scientific Dataset Model: A lightweight and portable model
and file format for multi-dimensional scientific data. PLOS ONE, 15, 1-38, (2020). DOI:10.1371/journal.pone.0225953

2 Bak M., Rasmussen J. T., Nielsen N.C., SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy. J Magn
Reson. 147, 296330, (2000). DOI:10.1006/jmre.2000.2179

3 Massiot D., Fayon F., Capron M., King L., Le Calvé S., Alonso B., et al. Modelling one- and two-dimensional solid-state NMR.
spectra. Magn Reson Chem. 40, 7076, (2002) DOI:10.1002/mrc.984

4 PhySy Ltd. RMN 2.0; 2019. Available from: https://

/www.physyapps.com/rmn.
/ physyapp: /
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https://csdmpy.readthedocs.io/en/latest/
https://csdmpy.readthedocs.io/en/latest/
https://doi.org/10.1371/journal.pone.0225953
https://doi.org/10.1006/jmre.2000.2179
https://doi.org/10.1002/mrc.984
https://www.physyapps.com/rmn

mrinversion Documentation, Release 0.3.1.dev1

Here, the variable data_object is a CSDM object. The NMR spectroscopic dimension is a frequency dimension. NMR spectro-
scopists, however, prefer to view the spectrum on a dimensionless scale. If the dataset dimension within the CSDM object is in
frequency, you may convert it into ppm as follows,

>>> # convert the dimension coordinates from "Hz to “ppm .
>>> data_object.dimensions[0].to('ppm', 'nmr_ frequency_ratio')

In the above code, we convert the dimension at index 0 from Hz to ppm. For multi-dimensional datasets, use the appropriate
indexing to convert individual dimensions to ppm.

For comparison, let’s also include the true probability distribution from which the synthetic spinning sideband dataset is derived.

>>> datafile = "https://ssnmr.org/resources/mrinversion/lufeus68orwlizrg8juthcgvp7wlcpzk.
—csdf"
>>> true_data_object = cp.load(datafile) # the true solution for comparison

The following is the plot of the spinning sideband spectrum as well as the corresponding true probability distribution.

>>> _, ax = plt.subplots(l, 2, figsize=(9, 3.5), subplot_kw={'projection': 'csdm'})
>>> ax[0] .plot (data_object)
>>> ax[0].set_xlabel ('frequency / ppm')
>>> ax[0].invert_xaxis ()
ax|[

>>> 0] .set_title('Pure anisotropic MAS spectrum')

>>> plot2D(ax[1], true_data_object, title='True distribution')
>>> plt.tight_layout ()

>>> plt.savefig('filename.pdf') # to save figure as editable pdf
>>> plt.show()

Pure anisotropic MAS spectrum True distribution
1.0 : |
100 -
0.8 |
80
g
2 0.6 =
S £ 60
0 o
S Z
g 0.4 4 >
S 40
0.2 |
0.0 |
100 50 0 -50 —-100 60 80 100
frequency / ppm x / (ppm)

Figure 2.2: The figure on the left is the pure anisotropic MAS sideband amplitude spectrum corresponding to the
nuclear shielding tensor distribution shown on the right.

2.3. Getting started with spectral inversion 11
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2.3.2 Dimension Setup

For the inversion, we need to define (1) the coordinates associated with the pure anisotropic dimension, and (2) the two-
dimensional x-y coordinates associated with the anisotropic tensor parameters, i.e., the inversion solution grid.

In mrinversion, the anisotropic spectrum dimension is initialized with a Dimension object from the csdmpy package. This
object holds the frequency coordinates of the pure anisotropic spectrum. Because the example NMR dataset is imported as a
CSDM object, the anisotropic spectrum dimension is already available as a CSDM Dimension object in the CSDM object and
can be copied from there. Alternatively, we can create and initialize a anisotropic spectrum dimension using the csdmpy library
as shown below:

>>> anisotropic_dimension = cp.LinearDimension (count=32, increment='625Hz"', coordinates_
—~offset="-10kHz")
>>> print (anisotropic_dimension)

LinearDimension([-10000. -9375. -8750. -8125. -7500. -6875. -6250. -5625. -5000.
-4375. -3750. -3125. -2500. -1875. -1250. -625. 0. 625.
1250. 1875. 2500. 3125. 3750. 4375. 5000. 5625. 6250.
6875. 7500. 8125. 8750. 9375.] Hz)

Here, the anisotropic dimension is sampled at 625 Hz for 32 points with an offset of -10 kHz.

Similarly, we can create the CSDM dimensions needed for the x-y inversion grid as shown below:

>>> inverse_dimension = [
cp.LinearDimension (count=25, increment='370 Hz', label='x"), # the x—-coordinates
cp.LinearDimension (count=25, increment='370 Hz', label='y') # the y-coordinates

Both dimensions are sampled at every 370 Hz for 25 points. The inverse dimension at index O and 1 are the x and y dimensions,
respectively.

2.3.3 Generating the kernel

Import the ShieldingPALineshape (page 209) class and generate the kernel as follows,

>>> from mrinversion.kernel.nmr import ShieldingPALineshape
>>> lineshapes = ShieldingPALineshape (
anisotropic_dimension=anisotropic_dimension,
inverse_dimension=inverse_dimension,
channel="2951i",
magnetic_flux_density='9.4 T',
rotor_angle='54.735°",
rotor_frequency="'625 Hz',
number_of_sidebands=32

In the above code, the variable 1 ineshapes is an instance of the ShieldingPALineshape (page 209) class. The three
required arguments of this class are the anisotropic_dimension, inverse_dimension, and channel. We have already defined the first
two arguments in the previous subsection. The value of the channel attribute is the observed nucleus. The remaining optional
arguments are the metadata that describes the environment under which the spectrum is acquired. In this example, these arguments
describe a 29Si pure anisotropic spinning-sideband spectrum acquired at 9.4 T magnetic flux density and spinning at the magic
angle (54.735°) at 625 Hz. The value of the rotor_frequency argument is the effective anisotropic modulation frequency. For
measurements like PASS®, the anisotropic modulation frequency is the physical rotor frequency. For measurements like the

5 Dixon, W. T., Spinning sideband free and spinning sideband only NMR spectra in spinning samples. J. Chem. Phys, 77, 1800,
(1982). DOI:10.1063/1.444076

12 Chapter 2. User Documentation
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extended chemical shift modulation sequences (XCS)®, or its variants, where the effective anisotropic modulation frequency is
lower than the physical rotor frequency, then it should be set accordingly.

The argument number_of _sidebands is the maximum number of sidebands that will be computed per line-shape within the kernel.
For most two-dimensional isotropic vs. pure anisotropic spinning-sideband correlation spectra, the sampling along the sideband
dimension is the rotor or the effective anisotropic modulation frequency. Therefore, the number_of _sidebands argument is usually
the number of points along the sideband dimension. In this example, this value is 32.

Once the ShieldingPALineshape instance is created, use the kernel () (page 209) method of the instance to generate the spinning
sideband kernel, as follows,

>>> K = lineshapes.kernel (supersampling=1)
>>> print (K.shape)
(32, 625)

Here, K is the 32 x 625 kernel, where the 32 is the number of samples (sideband amplitudes), and 625 is the number of features
(subspectra) on the 25 x 25 x-y grid. The argument supersampling is the supersampling factor. In a supersampling scheme, each
grid cell is averaged over a n X n sub-grid, where n is the supersampling factor. A supersampling factor of 1 is equivalent to no
sub-grid averaging.

2.3.4 Data compression (optional)

Often when the kernel, K, is ill-conditioned, the solution becomes unstable in the presence of the measurement noise. An ill-
conditioned kernel is the one whose singular values quickly decay to zero. In such cases, we employ the truncated singular value
decomposition method to approximately represent the kernel K onto a smaller sub-space, called the range space, where the sub-
space kernel is relatively well-defined. We refer to this sub-space kernel as the compressed kernel. Similarly, the measurement
data on the sub-space is referred to as the compressed signal. The compression also reduces the time for further computation. To
compress the kernel and the data, import the TSVDCompression (page 218) class and follow,

>>> from mrinversion.linear_model import TSVDCompression
>>> new_system = TSVDCompression (K=K, s=data_object)
compression factor = 1.032258064516129

>>> compressed_K = new_system.compressed_K

>>> compressed_s = new_system.compressed_s

Here, the variable new_ sy stemis an instance of the TSVDCompression (page 218) class. If no truncation index is provided
as the argument, when initializing the TSVDCompression class, an optimum truncation index is chosen using the maximum
entropy method”, which is the default behavior. The attributes compressed_K (page 218) and compressed_s (page 218)
holds the compressed kernel and signal, respectively. The shape of the original signal v.s. the compressed signal is

>>> print (data_object.shape, compressed_s.shape)
(32,) (31,)

6 Gullion, T., Extended chemical shift modulation. J. Mag. Res., 85, 3, (1989). DOI:10.1016/0022-2364(89)90253-9
7 Varshavsky R., Gottlieb A., Linial M., Horn D., Novel unsupervised feature filtering of biological data. Bioinformatics, 22, e507e513,
(2006). DOI:10.1093/bioinformatics/btl214.
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2.3.5 Setting up the inverse problem

When setting up the inversion, we solved the smooth LASSO® problem. Read the Smooth-LASSO regularization (page 6) section
for further details.

Import the SmoothLasso (page 212) class and follow,

>>> from mrinversion.linear_model import SmoothLasso
>>> s_lasso = Smoothlasso(alpha=0.01, lambdal=1e-04, inverse_dimension=inverse_dimension)

Here, the variable s_lasso is an instance of the SmoothLasso (page 212) class. The required arguments of this class are
alpha and lambdal, corresponding to the hyperparameters «v and ), respectively, in the Eq. (2.7). At the moment, we don’t know
the optimum value of the alpha and lambdal parameters. We start with a guess value.

To solve the smooth lasso problem, use the it () (page 213) method of the s_1asso instance as follows,

>>> s_lasso.fit (K=compressed_K, s=compressed_s)

The two arguments of the it () (page 213) method are the kernel, K, and the signal, s. In the above example, we set the value
of K as compressed_K, and correspondingly the value of s as compressed_s. You may also use the uncompressed values
of the kernel and signal in this method, if desired.

The solution to the smooth lasso is accessed using the £ (page 212) attribute of the respective object.

>>> f _sol = s_lasso.f

The plot of the solution is

>>> _, ax = plt.subplots(l, 2, figsize=(9, 3.5), subplot_kw={'projection': 'csdm'})
>>> plot2D(ax[0], f_sol/f_sol.max (), title='Guess distribution')

>>> plot2D(ax[1l], true_data_object, title='True distribution')

>>> plt.tight_layout ()

>>> plt.show ()
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Figure 2.3: The figure on the left is the guess solution of the nuclear shielding tensor distribution derived from the
inversion of the spinning sideband dataset. The figure on the right is the true nuclear shielding tensor distribution.

8 Hebiri M, Sara A. Van De Geer, The Smooth-Lasso and other 11-+12-penalized methods, arXiv, (2010). arXiv:1003.4885v2
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You may also evaluate the residuals corresponding to the solution using the residuals () (page 213) method of the object as
follows,

>>> residuals = s_lasso.residuals (K=K, s=data_object)
>>> # the plot of the residuals

>>> plt.figure (figsize=(5, 3.5))

>>> ax = plt.subplot (projection="csdm')

>>> ax.plot (residuals, color='black")

>>> plt.tight_layout ()

>>> plt.show ()
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Figure 2.4: The residuals between the 1D MAS sideband spectrum and the predicted spectrum from the guess
shielding tensor parameter distribution.

The argument of the residuals method is the kernel and the signal data. We provide the original kernel, K, and signal, s, because
we desire the residuals corresponding to the original data and not the compressed data.

2.3.6 Statistical learning of tensor parameters

The solution from a linear model trained with the combined 11 and 12 priors, such as the smooth LASSO estimator used here,
depends on the choice of the hyperparameters. The solution shown in the above figure is when o = 0.01 and A = 1 x 10~%.
Although it’s a solution, it is unlikely that this is the best solution. For this, we employ the statistical learning-based model, such
as the n-fold cross-validation.

The SmoothLassoCV (page 214) class is designed to solve the smooth-lasso problem for a range of o and \ values and
determine the best solution using the n-fold cross-validation. Here, we search the best model on a 10 x 10 pre-defined -\ grid,
using a 10-fold cross-validation statistical learning method. The A and « values are sampled uniformly on a logarithmic scale as,

>>> lambdas = 10 ** (-4 - 2 * (np.arange(10) / 9))
>>> alphas = 10 ** (-3 - 2 * (np.arange(10) / 9))
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Smooth-LASSO CV Setup

Setup the smooth lasso cross-validation as follows

>>> from mrinversion.linear_model import SmoothLassoCV
>>> s_lasso_cv = SmoothLassoCV (
alphas=alphas,
lambdas=lambdas,
inverse_dimension=inverse_dimension,
sigma=0.005,
folds=10
)

>>> s_lasso_cv.fit (K=compressed_K, s=compressed_s)

The arguments of the SmoothLassoCV (page 214) is a list of the alpha and lambda values, along with the standard deviation
of the noise, sigma. The value of the argument folds is the number of folds used in the cross-validation. As before, to solve the
problem, use the £it () (page 215) method, whose arguments are the kernel and signal.

The optimum hyperparameters

The optimized hyperparameters may be accessed using the hyperparameters (page 215) attribute of the class instance,

>>> alpha = s_lasso_cv.hyperparameters|['alpha']
>>> lambda_1 = s_lasso_cv.hyperparameters['lambda']

The cross-validation surface

The cross-validation error metric is the mean square error metric. You may access this data using the
cross_validation_curve (page 215) attribute.

>>> plt.figure(figsize=(5, 3.5))

>>> ax = plt.subplot (projection="csdm')

>>> ax.contour (np.logl0(s_lasso_cv.cross_validation_curve), levels=25)

>>> ax.scatter(-—np.loglO(s_lasso_cv.hyperparameters['alpha']),
-np.logl0(s_lasso_cv.hyperparameters['lambda']),

B marker='x', color='k")

>>> plt.tight_layout ()

>>> plt.show()

The optimum solution

The best model selection from the cross-validation method may be accessed using the £ (page 215) attribute.

>>> f_sol_cv = s_lasso_cv.f # best model selected using the 10-fold cross-validation

The plot of the selected tensor parameter distribution is shown below.

>>> _, ax = plt.subplots(l, 2, figsize=(9, 3.5), subplot_kw={'projection': 'csdm'})
>>> plot2D(ax[0], f_sol_cv/f_sol_cv.max(), title='Optimum distribution')

>>> plot2D(ax[1], true_data_object, title='True distribution')

>>> plt.tight_layout ()

>>> plt.show ()
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Figure 2.5: The ten-folds cross-validation prediction error surface as a function of the hyperparameters a and f.
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Figure 2.6: The figure on the left is the optimum solution selected by the 10-folds cross-validation method. The
figure on the right is the true model of the nuclear shielding tensor distribution.
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See also:

csdmpy, Quantity, numpy array, Matplotlib library

2.4 Getting started with relaxation inversion

Let’s examine the inversion of a NMR signal decay from 75 relaxation measurement into a 1D distribution of 75 parameters. For
illustrative purposes, we use a synthetic one-dimensional signal decay.

Import relevant modules

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> from matplotlib import rcParams

>>> from mrinversion.kernel import relaxation

>>> rcParams|['pdf.fonttype']l = 42 # for exporting figures as illustrator editable pdf.

2.4.1 Import the dataset

The first step is getting the dataset. In this example, we get the data from a CSDM' compliant file-format. Import the csdmpy
module and load the dataset as follows,

Note: The CSDM file-format is a new open-source universal file format for multi-dimensional datasets. It is supported by NMR
programs such as SIMPSON?, DMFIT?, and RMN*. A python package supporting CSDM file-format, csdmpy, is also available.

>>> import csdmpy as cp

>>> filename = "https://ssnmr.org/resources/mrinversion/test3_signal.csdf"
>>> data_object = cp.load(filename) # load the CSDM file with the csdmpy module

Here, the variable data_object is a CSDM object. For comparison, let’s also import the true t2 distribution from which the
synthetic 1D signal decay is simulated.

>>> datafile = "https://ssnmr.org/resources/mrinversion/test3_t2.csdf"
>>> true_t2_dist = cp.load(datafile) # the true solution for comparison

The following is the plot of the NMR signal decay as well as the corresponding true probability distribution.

>>> _, ax = plt.subplots(l, 2, figsize=(9, 3.5), subplot_kw={'projection': 'csdm'})
>>> ax[0] .plot (data_object)
>>> ax[0] .set_xlabel('time / s')

>>> ax[0].set_title('NMR signal decay')

>>> ax[1].plot (true_t2_dist)
>>> ax[1l].set_title('True distribution')

(continues on next page)

1 Srivastava, D. J., Vosegaard, T., Massiot, D., Grandinetti, P. J., Core Scientific Dataset Model: A lightweight and portable model
and file format for multi-dimensional scientific data. PLOS ONE, 15, 1-38, (2020). DOI:10.1371/journal.pone.0225953

2 Bak M., Rasmussen J. T., Nielsen N.C., SIMPSON: A General Simulation Program for Solid-State NMR Spectroscopy. J Magn
Reson. 147, 296330, (2000). DOI:10.1006/jmre.2000.2179

3 Massiot D., Fayon F., Capron M., King I., Le Calvé S., Alonso B., et al. Modelling one- and two-dimensional solid-state NMR.
spectra. Magn Reson Chem. 40, 7076, (2002) DOI:10.1002/mrc.984

4 PhySy Ltd. RMN 2.0; 2019. Available from: https://www.physyapps.com/rmn.
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(continued from previous page)

>>> ax[1].set_xlabel ('log (T2 / s)')
>>> plt.tight_layout ()
>>> plt.show()
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Figure 2.7: The figure on the left is the NMR signal decay corresponding to T distribution shown on the right.

2.4.2 Generating the kernel

Import the T2 (page 211) class and generate the kernel as follows,

>>> from mrinversion.kernel.relaxation import T2
>>> relaxT2 = T2(
kernel_dimension = data_object.dimensions[0],
inverse_dimension=dict (
count=64, minimum="1e-2 s", maximum="1e3 s", scale="log", label="log (T2 / s)"

)

>>> inverse_dimension = relaxT2.inverse_dimension

In the above code, the variable re1axT2 is an instance of the T2 (page 211) class. The two required arguments of this class are the
kernel_dimension and inverse_dimension. The kernel_dimension is the dimension over which the signal relaxation measurements
are acquired. In this case, this referes to the time at which the relaxation measurement was performed. The inverse_dimension is
the dimension over which the T2 distribution is evaluated. In this case, the inverse dimension is a log-linear scale spanning from
10 ms to 1000 s in 64 steps.

Once the 72 instance is created, use the kernel () (page 211) method of the instance to generate the relaxation kernel, as
follows,

>>> K = relaxT2.kernel (supersampling=20)
>>> print (K.shape)
(25, 64)

Here, K is the 25 x 64 kernel, where the 25 is the number of samples (time measurements), and 64 is the number of features
(T2). The argument supersampling is the supersampling factor. In a supersampling scheme, each grid cell is averaged over a n
sub-grid, where n is the supersampling factor.
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2.4.3 Data compression (optional)

Often when the kernel, K, is ill-conditioned, the solution becomes unstable in the presence of the measurement noise. An ill-
conditioned kernel is the one whose singular values quickly decay to zero. In such cases, we employ the truncated singular value
decomposition method to approximately represent the kernel K onto a smaller sub-space, called the range space, where the sub-
space kernel is relatively well-defined. We refer to this sub-space kernel as the compressed kernel. Similarly, the measurement
data on the sub-space is referred to as the compressed signal. The compression also reduces the time for further computation. To
compress the kernel and the data, import the TSVDCompression (page 218) class and follow,

>>> from mrinversion.linear_model import TSVDCompression
>>> new_system = TSVDCompression (K=K, s=data_object)
compression factor = 1.0416666666666667

>>> compressed_K = new_system.compressed_K

>>> compressed_s = new_system.compressed_s

Here, the variable new_systemis an instance of the TSVDCompression (page 218) class. If no truncation index is provided
as the argument, when initializing the TSVDCompression class, an optimum truncation index is chosen using the maximum
entropy method”, which is the default behavior. The attributes compressed_K (page 218) and compressed_s (page 218)
holds the compressed kernel and signal, respectively. The shape of the original signal v.s. the compressed signal is

>>> print (data_object.shape, compressed_s.shape)
(25,) (24,)

2.4.4 Statistical learning of relaxation parameters

The solution from a linear model trained with 11, such as the FISTA estimator used here, depends on the choice of the hyperparam-
eters. To find the optimum hyperparameter, we employ the statistical learning-based model, such as the n-fold cross-validation.

The LassoFistaCV (page 217) class is designed to solve the 11 problem for a range of A values and determine the best solution
using the n-fold cross-validation. Here, we search the best model using a 5-fold cross-validation statistical learning method. The
) values are sampled uniformly on a logarithmic scale as,

>>> lambdas = 10 ** (-7 + 6 * (np.arange(64) / 63))

Fista LASSO cross-validation Setup

Setup the smooth lasso cross-validation as follows

>>> from mrinversion.linear_model import LassoFistaCV
>>> f lasso_cv = LassoFistaCV (
lambdas=1ambdas,
inverse_dimension=inverse_dimension,
sigma=0.0008,
folds=5,
)

>>> f_lasso_cv.fit (K=compressed_K, s=compressed_s)

The arguments of the LassoFistaCV (page 217) is a list of the lambda values, along with the standard deviation of the noise,
sigma. The value of the argument folds is the number of folds used in the cross-validation. As before, to solve the problem, use
the £it () (page 217) method, whose arguments are the kernel and signal.

5 Varshavsky R., Gottlieb A., Linial M., Horn D., Novel unsupervised feature filtering of biological data. Bioinformatics, 22, e507e513,
(2006). DOI:10.1093/bioinformatics/bt1214.
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The optimum hyperparameters

The optimized hyperparameters may be accessed using the hyperparameters attribute of the class instance,

>>> lam = f_lasso_cv.hyperparameters|['lambda']

The cross-validation curve

The cross-validation error metric is the mean square error metric. You may plot this data using the cv_p 1ot (page 217) function.

>>> plt.figure (figsize=(5, 3.5))
>>> f_lasso_cv.cv_plot ()

>>> plt.tight_layout ()

>>> plt.show /()
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Figure 2.8: The five-folds cross-validation prediction error curve as a function of the hyperparameter .

The optimum solution

The best model selection from the cross-validation method may be accessed using the f attribute.

>>> f_sol_cv = f_lasso_cv.f # best model selected using the 5-fold cross-validation

The plot of the selected T2 parameter distribution is shown below.

>>> plt.figure(figsize=(4, 3))
>>> plt.subplot (projection="'csdm'")
>>> plt.plot (true_t2_dist / true_t2_dist.max(), label='True distribution')

(continues on next page)
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(continued from previous page)

>>> plt.plot(f_sol_cv / f_sol_cv.max(), label='Optimum distribution")
>>> plt.legend()

>>> plt.tight_layout ()

>>> plt.show ()
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Figure 2.9: The figure depicts the comparision of the true T2 distribution and optimal T2 distribution solutiom
from five-fold cross-validation.

See also:

csdmpy, Quantity, numpy array, Matplotlib library
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CHAPTER
THREE

EXAMPLES

3.1 Example Gallery

The following are the examples of the statistical learning of nuclear shielding tensor parameters from pure anisotropic NMR
spectrum.

3.1.1 One-dimensional synthetic datasets

This sub-section is for illustration only. For the practical application of the inversion method, refer to the next sub-section.

3.1.2 Spinning sideband spectrum (Experiment)

The following are the examples of the statistical learning of nuclear shielding tensor from pure anisotropic spinning sideband
spectrum.

3.1.3 Magic angle flipping (Experiment)

The following are the examples of the statistical learning method applied in determining a distribution of the nuclear shielding
tensor parameters from a 2D MAF NMR spectrum correlating the isotropic to the anisotropic frequency contributions.

3.1.4 Relaxation in Glasses (Experiment)

The following are the examples of the statistical learning of relaxation parameter distribution in glasses.

One-dimensional synthetic datasets

This sub-section is for illustration only. For the practical application of the inversion method, refer to the next sub-section.
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Unimodal distribution (Aniso Shielding Sideband Inversion)

The following example demonstrates the statistical learning based determination of the nuclear shielding tensor parameters from a
one-dimensional cross-section of a spinning sideband correlation spectrum. In this example, we use a synthetic sideband amplitude
spectrum from a unimodal tensor distribution.

Before getting started

Import all relevant packages.

import csdmpy as cp
import matplotlib.pyplot as plt
import numpy as np

from mrinversion.kernel.nmr import ShieldingPALineshape
from mrinversion.linear_model import SmoothLasso, SmoothLassoCV, TSVDCompression
from mrinversion.utils import get_polar_grids

# Setup for the matplotlib figures
# function for 2D x-y plot.

def plot2D(ax, csdm_object, title=""):
# convert the dimension coordinates of the csdm _object from Hz to pmm.

_ = [item.to("ppm", "nmr_frequency_ratio") for item in csdm_object.dimensions]
levels = (np.arange(9) + 1) / 10
ax.contourf (csdm_object, cmap="gist_ncar", levels=levels)

ax.grid (None)
ax.set_title(title)
get_polar_grids (ax)
ax.set_aspect ("equal")

/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/mrsimulator/methods.py:3: Warning: Importing library methods from.
— mrsimulator.methods”™ is deprecated and will be removed in the next version. Please.
—import library methods from the "mrsimulator.method.lib’ module.

warnings.warn (

Dataset setup
Import the dataset

Load the dataset. Here, we import the dataset as a CSDM data-object.

# the 1D spinning sideband cross-section data in csdm format

domain = "https://ssnmr.org/resources/mrinversion"
filename = f"{domain}/kehokr5opOamkfp5auyd498nblcdrlixy.csdf"
data_object = cp.load(filename)

# convert the data dimension from 'Hz' to “ppm .
data_object.dimensions[0] .to ("ppm", "nmr_frequency_ratio")
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The variable data_object holds the 1D dataset. For comparison, let’s also import the true tensor parameter distribution from
which the synthetic 1D pure anisotropic spinning sideband cross-section amplitudes is simulated.

datafile = f"{domain}/s5wpm26wdcv3w64gjhouqud58chdz0nd.csdf"
true_data_object = cp.load(datafile)

The plot of the 1D sideband cross-section along with the 2D true tensor parameter distribution of the synthetic dataset is shown
below.

# the plot of the 1D MAF cross-section dataset.

_, ax = plt.subplots (1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})
ax[0] .plot (data_object)

ax[0] .invert_xaxis ()

# the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout ()

plt.show ()
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Linear Inversion setup
Dimension setup

Anisotropic-dimension: The dimension of the dataset that holds the pure anisotropic spinning sidebands.

anisotropic_dimension = data_object.dimensions|[0]

x-y dimensions: The two inverse dimensions corresponding to the x and y-axis of the x-y grid.

inverse_dimension = [
cp.LinearDimension (count=25, increment="370 Hz", label="x"), # the "x —-dimension.
cp.LinearDimension (count=25, increment="370 Hz", label="y"), # the 'y —-dimension.
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Generating the kernel

For sideband datasets, the line-shape kernel corresponds to the pure anisotropic nuclear shielding spinning sideband spectra. Use
the ShieldingPALineshape (page 209) class to generate the sideband kernel.

lineshape = ShieldingPALineshape (
anisotropic_dimension=anisotropic_dimension,
inverse_dimension=inverse_dimension,
channel="29si",
magnetic_flux_density="9.4 T",
rotor_angle="54.735 deg",
rotor_frequency="625 Hz",
number_of_sidebands=32,

Here, 1ineshape is an instance of the ShieldingPALineshape (page 209) class. The required arguments of this class
are the anisotropic_dimension, inverse_dimension, and channel. We have already defined the first two arguments in the previous
sub-section. The value of the channel argument is the observed nucleus. In this example, this value is 29Si’. The remaining
arguments, such as the magnetic_flux_density, rotor_angle, and rotor_frequency, are set to match the conditions under which the
spectrum was acquired. Note, the rotor frequency is the effective anisotropic modulation frequency, which may be less than the
physical rotor frequency. The number of sidebands is usually the number of points along the sideband dimension.

Once the ShieldingPALineshape instance is created, use the kernel () (page 209) method of the instance to generate the
sideband kernel.

K = lineshape.kernel (supersampling=1)

Data Compression

Data compression is optional but recommended. It may reduce the size of the inverse problem and, thus, further computation
time.

new_system = TSVDCompression (K, data_object)
compressed_K = new_system.compressed_K
compressed_s = new_system.compressed_s

print (f"truncation_index = {new_system.truncation_index/")

compression factor = 1.032258064516129
truncation_index = 31

Solving the inverse problem
Smooth-LASSO problem

Solve the smooth-lasso problem. You may choose to skip this step and proceed to the statistical learning method. Usually,
the statistical learning method is a time-consuming process that solves the smooth-lasso problem over a range of predefined
hyperparameters. If you are unsure what range of hyperparameters to use, you can use this step for a quick look into the possible
solution by giving a guess value for the o and A hyperparameters, and then decide on the hyperparameters range accordingly.

# guess alpha and lambda values.
s_lasso = SmoothLasso (alpha=5e-5, lambdal=5e-6, inverse_dimension=inverse_dimension)

(continues on next page)
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(continued from previous page)

s_lasso.fit (K=compressed_K, s=compressed_s)
f sol = s_lasso.f

Here, f_so1 is the solution corresponding to hyperparameters o = 5 x 107> and A = 5 x 1076, The plot of this solution is

_, ax = plt.subplots (1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})

# the plot of the guess tensor distribution solution.
plot2D (ax[0], f_sol / f_sol.max(), title="Guess distribution")

# the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout ()

plt.show ()
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Predicted spectrum

You may also evaluate the predicted spectrum from the above solution following

residuals = s_lasso.residuals (K, data_object)
predicted_spectrum = data_object - residuals

plt.figure (figsize=(4, 3))
plt.subplot (projection="csdm")

plt.plot (data_object, color="black", label="spectrum") # the original spectrum
plt.plot (predicted_spectrum, color="red", label="prediction") # the predicted spectrum
plt.gca() .invert_xaxis ()

plt.legend()
plt.tight_layout ()
plt.show ()
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As you can see from the predicted spectrum, our guess isn’t far from the optimum hyperparameters. Let’s create a search grid
about the guess hyperparameters and run a cross-validation method for selection.

Statistical learning of the tensors
Smooth LASSO cross-validation

Create a guess range of values for the « and A hyperparameters. The following code generates a range of A and « values that are
uniformly sampled on the log scale.

lambdas = 10 ** (-5 - 1 * (np.arange(6) / 5))
alphas = 10 ** (-4 - 2 * (np.arange(6) / 5))

# set up cross validation smooth lasso method
s_lasso_cv = SmoothLassoCV (
alphas=alphas,
lambdas=lambdas,
inverse_dimension=inverse_dimension,
sigma=0.005,
folds=10,
)
# run the fit using the compressed kernel and compressed signal.
s_lasso_cv.fit (compressed_K, compressed_s)

/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: ~fit_params’® is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: " fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.

(continues on next page)
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warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—»site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~ fit_params ™ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params ™ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params  is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~ fit_params’® is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params ™ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (

(continues on next page)
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/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params ™ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params 1instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—»site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params ™ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params ™ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: ~fit_params’® is.
—~deprecated and will be removed in version 1.6. Pass parameters via params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~ fit_params’® is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (

30 Chapter 3. Examples




mrinversion Documentation, Release 0.3.1.dev1

The optimum hyper-parameters

Use the hyperparameters (page 215) attribute of the instance for the optimum hyper-parameters, « and A, determined from
the cross-validation.

print (s_lasso_cv.hyperparameters)

{'alpha': 2.5118864315095823e-06, 'lambda': 1.584893192461114e-06}

The cross-validation surface

Optionally, you may want to visualize the cross-validation error curve/surface. Use the cross_validation_curve
(page 215) attribute of the instance, as follows. The cross-validation metric is the mean square error (MSE).

cv_curve = s_lasso_cv.cross_validation_curve

# plot of the cross-validation curve
plt.figure(figsize=(5, 3.5))
ax = plt.subplot (projection="csdm")
ax.contour (np.logl0(s_lasso_cv.cross_validation_curve), levels=25)
ax.scatter (
-np.logl0(s_lasso_cv.hyperparameters["alpha"]),
-np.logl0(s_lasso_cv.hyperparameters["lambda"]),
marker="x",
color="k",

plt.tight_layout (pad=0.5)
plt.show ()
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The optimum solution

The £ (page 215) attribute of the instance holds the solution.

f_sol = s_lasso_cv.f

The corresponding plot of the solution, along with the true tensor distribution, is shown below.

_, ax = plt.subplots (1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})

# the plot of the tensor distribution solution.
plot2D (ax[0], f_sol / f_sol.max (), title="Optimum distribution")

# the plot of the true tensor distribution.
plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout ()

plt.show ()
Optimum distribution True distribution
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Total running time of the script: (0 minutes 25.684 seconds)

Bimodal distribution (Aniso Shielding Sideband Inversion)

The following example demonstrates the statistical learning based determination of nuclear shielding tensor parameters from a
one-dimensional cross-section of a spinning sideband correlation spectrum. In this example, we use a synthetic sideband amplitude
spectrum from a bimodal tensor distribution.

Before getting started

Import all relevant packages.

import csdmpy as cp
import matplotlib.pyplot as plt
import numpy as np

from mrinversion.kernel.nmr import ShieldingPALineshape
from mrinversion.linear_model import SmoothLasso, SmoothLassoCV, TSVDCompression

(continues on next page)
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from mrinversion.utils import get_polar_grids

# Setup for the matplotlib figures

# function for 2D x-y plot.
def plot2D(ax, csdm_object, title=""):
# convert the dimension coordinates of the csdm_object from Hz to pmm.
_ = [item.to ("ppm", "nmr_frequency_ratio") for item in csdm_object.dimensions]

levels = (np.arange(9) + 1) / 10

ax.contourf (csdm_object, cmap="gist_ncar", levels=levels)
ax.grid (None)

ax.set_title(title)

get_polar_grids (ax)

ax.set_aspect ("equal™)

Dataset setup
Import the dataset

Load the dataset. Here, we import the dataset as a CSDM data-object.

# the 1D spinning sideband cross-section data in csdm format

domain = "https://ssnmr.org/resources/mrinversion"
filename = f"{domain}/wibhb6sif76mxfgndetew8mnrgépwdpj.csdf"
data_object = cp.load(filename)

# convert the data dimension from "Hz ' to ‘ppm .
data_object.dimensions[0] .to ("ppm", "nmr_ frequency_ratio")

The variable data_object holds the 1D dataset. For comparison, let’s also import the true tensor parameter distribution from
which the synthetic 1D pure anisotropic spinning sideband cross-section amplitudes is simulated.

datafile = f"{domain}/xesah85nd2gtm9yefazmladi697khuwi.csdf"
true_data_object = cp.load(datafile)

The plot of the 1D sideband cross-section along with the 2D true tensor parameter distribution of the synthetic dataset is shown
below.

# the plot of the 1D MAF cross-section dataset.

_, ax = plt.subplots (1, 2, figsize=(9, 3.5), subplot_kw={"projection": "csdm"})
ax[0] .plot (data_object)

ax[0] .invert_xaxis ()

# the plot of the true tensor distribution.

plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout ()

plt.show ()
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Linear Inversion setup
Dimension setup

Anisotropic-dimension: The dimension of the dataset that holds the pure anisotropic spinning sidebands.

anisotropic_dimension = data_object.dimensions[0]

x-y dimensions: The two inverse dimensions corresponding to the x and y-axis of the x-y grid.

inverse_dimension = [
cp.LinearDimension (count=25, increment="370 Hz", label="x"), # the 'x'—-dimension.
cp.LinearDimension (count=25, increment="370 Hz", label="y"), # the 'y —-dimension.

Generating the kernel

For sideband datasets, the line-shape kernel corresponds to the pure anisotropic nuclear shielding spinning sideband spectra. Use
the ShieldingPALineshape (page 209) class to generate the sideband kernel.

lineshape = ShieldingPALineshape (
anisotropic_dimension=anisotropic_dimension,
inverse_dimension=inverse_dimension,
channel="295i",
magnetic_flux_density="9.4 T",
rotor_angle="54.735 deg",
rotor_frequency="625 Hz",
number_of_sidebands=32,

)
K = lineshape.kernel (supersampling=1)
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Data Compression

Data compression is optional but recommended. It may reduce the size of the inverse problem and, thus, further computation

time.

new_system = TSVDCompression (K, data_object)
compressed_K = new_system.compressed_K
compressed_s = new_system.compressed_s

print (f"truncation_index = {new_system.truncation_index /")

compression factor = 1.032258064516129
truncation_index = 31

Solving the inverse problem

Smooth-LASSO problem

Solve the smooth-lasso problem. You may choose to skip this step and proceed to the statistical learning method. Usually,
the statistical learning method is a time-consuming process that solves the smooth-lasso problem over a range of predefined
hyperparameters. If you are unsure what range of hyperparameters to use, you can use this step for a quick look into the possible
solution by giving a guess value for the « and A hyperparameters, and then decide on the hyperparameters range accordingly.

# guess alpha and lambda values.

s_lasso = SmoothLasso (alpha=5e-5, lambdal=5e-6, inverse_dimension=inverse_dimension)

s_lasso.fit (K=compressed_K, s=compressed_s)
f_sol = s_1lasso.f

Here, f_so1 is the solution corresponding to hyperparameters o = 5 x 107> and A = 5 x 1075, The plot of this solution is

_, ax = plt.subplots (1, 2, figsize=(9, 3.5), subplot_kw={"projection":

# the plot of the guess tensor distribution solution.
plot2D(ax[0], f_sol / f_sol.max (), title="Guess distribution")

# the plot of the true tensor distribution.

plot2D(ax[1], true_data_object, title="True distribution")
plt.tight_layout ()

plt.show ()

"csdm"})
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Predicted spectrum

You may also evaluate the predicted spectrum from the above solution following

residuals s_lasso.residuals (K, data_object)
predicted_spectrum data_object - residuals

plt.figure(figsize=(4, 3))
plt.subplot (projection="csdm")
plt.plot (data_object, color="black",
plt.plot (predicted_spectrum,
plt.gca() .invert_xaxis ()
plt.legend()
plt.tight_layout ()
plt.show ()

label="spectrum")

color="red", label="prediction")

# the original spectrum

# the predicted spectrum
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As you can see from the predicted spectrum, our guess isn’t far from the optimum hyperparameters. Let’s create a search grid

about the guess hyperparameters and run a cross-validation method for selection.
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Statistical learning of the tensors
Smooth LASSO cross-validation

Create a guess range of values for the o and A hyperparameters. The following code generates a range of A\ and « values that are
uniformly sampled on the log scale.

lambdas = 10 ** (-5 - 1 * (np.arange(6) / 5))
alphas = 10 ** (-4 - 2 * (np.arange(6) / 5))

# set up cross validation smooth lasso method
s_lasso_cv = SmoothLassoCV (
alphas=alphas,
lambdas=1ambdas,
inverse_dimension=inverse_dimension,
sigma=0.005,
folds=10,
)
# run the fit using the compressed kernel and compressed signal.
s_lasso_cv.fit (compressed_K, compressed_s)

/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params ™ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params 1instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: ~fit_params  is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via params instead.
warnings.warn (

(continues on next page)
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/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params ™ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params 1instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—»site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params ™ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params ™ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: ~fit_params’® is.
—~deprecated and will be removed in version 1.6. Pass parameters via params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~ fit_params’® is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
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—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "~fit_params ™ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params 1instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—ssite-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—»site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: "fit_params’ is.
—deprecated and will be removed in version 1.6. Pass parameters via “params instead.
warnings.warn (
/home/docs/checkouts/readthedocs.org/user_builds/mrinversion/envs/latest/lib/python3.10/
—site-packages/sklearn/model_selection/_validation.py:73: FutureWarning: ~fit_params ™ i